Photon-mediated dipole–dipole interactions as a resource for quantum science and technology in cold atoms

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
H H Jen
{"title":"Photon-mediated dipole–dipole interactions as a resource for quantum science and technology in cold atoms","authors":"H H Jen","doi":"10.1088/2058-9565/adbb86","DOIUrl":null,"url":null,"abstract":"Photon-mediated dipole–dipole interactions arise from atom-light interactions, which are universal and prevalent in a wide range of open quantum systems. This pairwise and long-range spin-exchange interaction results from multiple light scattering among the atoms. A recent surge of interests and progresses in both experiments and theories promises this core mechanism of collective interactions as a resource to study quantum science and to envision next-generation applications in quantum technology. Here we summarize recent developments in both theories and experiments, where we introduce several central theoretical approaches and focus on cooperative light scattering from small sample of free-space atoms, an atom-waveguide coupled interface that hosts the waveguide QED, and topological quantum optical platforms. The aim of this review is to manifest the essential and distinct features of collective dynamics induced by resonant dipole–dipole interactions and to reveal unprecedented opportunities in enhancing the performance or offering new applications in light manipulations, quantum metrology, quantum computations, and light harvesting innovations.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"38 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adbb86","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photon-mediated dipole–dipole interactions arise from atom-light interactions, which are universal and prevalent in a wide range of open quantum systems. This pairwise and long-range spin-exchange interaction results from multiple light scattering among the atoms. A recent surge of interests and progresses in both experiments and theories promises this core mechanism of collective interactions as a resource to study quantum science and to envision next-generation applications in quantum technology. Here we summarize recent developments in both theories and experiments, where we introduce several central theoretical approaches and focus on cooperative light scattering from small sample of free-space atoms, an atom-waveguide coupled interface that hosts the waveguide QED, and topological quantum optical platforms. The aim of this review is to manifest the essential and distinct features of collective dynamics induced by resonant dipole–dipole interactions and to reveal unprecedented opportunities in enhancing the performance or offering new applications in light manipulations, quantum metrology, quantum computations, and light harvesting innovations.
光子介导的偶极-偶极相互作用作为冷原子量子科学和技术的资源
光子介导的偶极子-偶极子相互作用源于原子-光相互作用,在广泛的开放量子系统中是普遍和普遍的。这种双向和远距离自旋交换相互作用是由原子间的多次光散射引起的。最近在实验和理论方面的兴趣和进展激增,保证了这种集体相互作用的核心机制作为研究量子科学和设想下一代量子技术应用的资源。在这里,我们总结了理论和实验的最新进展,其中我们介绍了几个核心理论方法,并专注于自由空间原子小样本的协同光散射,原子-波导耦合界面(主办波导QED)和拓扑量子光学平台。本综述的目的是揭示共振偶极-偶极相互作用引起的集体动力学的基本和独特特征,并揭示在光操纵、量子计量、量子计算和光收获创新方面提高性能或提供新应用的前所未有的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信