{"title":"AaEIL2 and AaERF059 are involved in fruit coloration and ripening by crossly regulating ethylene and auxin signal pathway in Actinidia arguta","authors":"Yukuo Li, Zhe Song, Xu Zhan, Miaomiao Lin, Xiaohan Li, Ran Wang, Leiming Sun, Hong Gu, Feng Wei, Jinbao Fang, Xiujuan Qi","doi":"10.1016/j.hpj.2024.07.013","DOIUrl":null,"url":null,"abstract":"In kiwifruit (<ce:italic>Actinidia arguta</ce:italic>), fruit coloration is typically accompanied by ripening; however, the intrinsic connection between these two processes remains unclear. In this study, we found that ethylene and auxin accelerated and suppressed fruit coloration and ripening, respectively, in <ce:italic>A. arguta</ce:italic>. ETHYLENE INSENSITIVE 3-LIKE 2 (AaEIL2) and ETHYLENE RESPONSIVE FACTOR (AaERF059) were mined and identified using yeast two-hybrid library screening and transcriptome analysis. AaEIL2, specifically induced to high expression by ethylene, was confirmed as a transcription factor that positively regulates coloration and ripening by targeting <ce:italic>AaLDOX</ce:italic> (leucoanthocyanidin dioxygenase involved in anthocyanin biosynthesis) and <ce:italic>AaPG18</ce:italic> (polygalacturonase involved in cell wall degradation) based on its subcellular localization in <ce:italic>Arabidopsis</ce:italic> protoplasts, stable genetic transformation in transgenic tomato, and yeast one-hybrid and luciferase activity assays. AaERF059 also responds to ethylene and regulates ethylene-/auxin-mediated fruit coloration and ripening by targeting the downstream genes <ce:italic>AaACS2</ce:italic> (ACC synthase, which is involved in ethylene biosynthesis) and <ce:italic>AaGH3</ce:italic> (Gretchen-Hagen 3, which is involved in the auxin pathway). Overall, AaEIL2 and AaERF059 regulate ethylene-and auxin-mediated fruit coloration and ripening by maintaining a dynamic balance in a positive and negative regulatory manner. Our results not only identified key genes but also established an intrinsic connection between fruit coloration and ripening in <ce:italic>A. arguta</ce:italic>.","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":"12 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticultural Plant Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.hpj.2024.07.013","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In kiwifruit (Actinidia arguta), fruit coloration is typically accompanied by ripening; however, the intrinsic connection between these two processes remains unclear. In this study, we found that ethylene and auxin accelerated and suppressed fruit coloration and ripening, respectively, in A. arguta. ETHYLENE INSENSITIVE 3-LIKE 2 (AaEIL2) and ETHYLENE RESPONSIVE FACTOR (AaERF059) were mined and identified using yeast two-hybrid library screening and transcriptome analysis. AaEIL2, specifically induced to high expression by ethylene, was confirmed as a transcription factor that positively regulates coloration and ripening by targeting AaLDOX (leucoanthocyanidin dioxygenase involved in anthocyanin biosynthesis) and AaPG18 (polygalacturonase involved in cell wall degradation) based on its subcellular localization in Arabidopsis protoplasts, stable genetic transformation in transgenic tomato, and yeast one-hybrid and luciferase activity assays. AaERF059 also responds to ethylene and regulates ethylene-/auxin-mediated fruit coloration and ripening by targeting the downstream genes AaACS2 (ACC synthase, which is involved in ethylene biosynthesis) and AaGH3 (Gretchen-Hagen 3, which is involved in the auxin pathway). Overall, AaEIL2 and AaERF059 regulate ethylene-and auxin-mediated fruit coloration and ripening by maintaining a dynamic balance in a positive and negative regulatory manner. Our results not only identified key genes but also established an intrinsic connection between fruit coloration and ripening in A. arguta.
期刊介绍:
Horticultural Plant Journal (HPJ) is an OPEN ACCESS international journal. HPJ publishes research related to all horticultural plants, including fruits, vegetables, ornamental plants, tea plants, and medicinal plants, etc. The journal covers all aspects of horticultural crop sciences, including germplasm resources, genetics and breeding, tillage and cultivation, physiology and biochemistry, ecology, genomics, biotechnology, plant protection, postharvest processing, etc. Article types include Original research papers, Reviews, and Short communications.