ZmEREB180 modulates waterlogging tolerance in maize by regulating root development and antioxidant gene expression

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Huanhuan Qi, Jing Wang, Xin Wang, Kun Liang, Meicheng Ke, Xueqing Zheng, Wenbin Tang, Ziyun Chen, Yinggen Ke, Pingfang Yang, Fazhan Qiu, Feng Yu
{"title":"ZmEREB180 modulates waterlogging tolerance in maize by regulating root development and antioxidant gene expression","authors":"Huanhuan Qi, Jing Wang, Xin Wang, Kun Liang, Meicheng Ke, Xueqing Zheng, Wenbin Tang, Ziyun Chen, Yinggen Ke, Pingfang Yang, Fazhan Qiu, Feng Yu","doi":"10.1111/pbi.70030","DOIUrl":null,"url":null,"abstract":"<p>With climate change increasing the frequency of extreme weather events, waterlogging has become a significant threat to agricultural production, especially in maize-growing regions. Waterlogging induces hypoxic conditions in the root zone, limiting maize growth and yield (Liang <i>et al</i>., <span>2020</span>; Pedersen <i>et al</i>., <span>2017</span>). Plants have evolved adaptive mechanisms, such as adventitious root (AR) formation and enhanced antioxidant activity, to cope with waterlogging stress (Pedersen <i>et al</i>., <span>2021</span>; Yamauchi <i>et al</i>., <span>2018</span>). However, the regulatory mechanisms in maize remain poorly understood.</p>\n<p>Group VII ethylene response factor proteins (ERFVIIs) are key regulators of waterlogging tolerance in model plants (Hartman <i>et al</i>., <span>2021</span>). Our previous work showed that <i>ZmEREB180</i>, a maize ERFVII, promotes waterlogging tolerance by enhancing AR formation and modulating antioxidant levels (Yu <i>et al</i>., <span>2019</span>). In this study, we cloned the full-length coding sequence of <i>ZmEREB180</i> and inserted it into the pM999 vector. The recombinants and empty vector were transiently expressed in isolated B73 leaf protoplasts, followed by a transient and simplified cleavage under targets and tag-mentation (tsCUT&amp;Tag) assay (Liang <i>et al</i>., <span>2024</span>). A total of 4720 confident peaks corresponding to 3335 genes were identified (Table S1). Notably, 70.15% of these peaks were located in promoter regions, with 68.67% found in promoters less than 1 kb upstream (Figure 1a). The highest enrichment was observed at the transcription start site (Figure 1b). Motif analysis revealed the GCC-box (GCCGCC) as the highest scoring motif (E-value = 5.7 × 10<sup>−10</sup>). Compared with RNA-Seq data (Yu <i>et al</i>., <span>2019</span>) identified 421 genes that were differentially expressed in the <i>ZmEREB180</i> overexpression lines, under waterlogged conditions, and were directly bound by ZmEREB180 (Figure 1c; Table S2). We focused on genes involved in root development and antioxidant pathways. Lateral organ boundaries domain (LBD) proteins play pivotal roles in organ development. Two LBD genes, <i>ZmLBD5</i> and <i>ZmLBD38</i> (Table S2), were up-regulated in an overexpression line and under waterlogging conditions, in which <i>ZmLBD5</i> has been shown to promote AR formation (Feng <i>et al</i>., <span>2022</span>). Four antioxidant genes, including two glutathione-S-transferases (GST, <i>ZmGST8</i> and <i>ZmGST31</i>) and two peroxidases (POD, <i>ZmPOD12</i> and <i>ZmPOD55</i>), exhibited similar expression profiles (Table S2). The tsCUT&amp;Tag data revealed significant peaks in the promoter of these genes (Figure 1d). Additionally, GCC-box motifs were located in these regions, suggesting direct regulation by ZmEREB180 under waterlogging conditions.</p>\n<figure><picture>\n<source media=\"(min-width: 1650px)\" srcset=\"/cms/asset/e7ef2f07-4842-485e-aa41-372284a3eeb4/pbi70030-fig-0001-m.jpg\"/><img alt=\"Details are in the caption following the image\" data-lg-src=\"/cms/asset/e7ef2f07-4842-485e-aa41-372284a3eeb4/pbi70030-fig-0001-m.jpg\" loading=\"lazy\" src=\"/cms/asset/b3b7fca5-5935-4dd2-b627-2f81a98f67ac/pbi70030-fig-0001-m.png\" title=\"Details are in the caption following the image\"/></picture><figcaption>\n<div><strong>Figure 1<span style=\"font-weight:normal\"></span></strong><div>Open in figure viewer<i aria-hidden=\"true\"></i><span>PowerPoint</span></div>\n</div>\n<div>The regulatory networks of <i>ZmEREB180</i> involved in maize waterlogging tolerance. (a) Distribution of identified peaks from ZmEREB180 tsCut&amp;Tag. Two independent experiments were conducted and the overlapping genes were used for further analysis. (b) Peak profile flanking the 3-kb gene body. TSS, transcript start site; TTS, transcription termination site. (c) Overlap of genes identified by ZmEREB180 tsCut&amp;Tag and differentially expressed genes in <i>ZmEREB180</i> overexpression lines and in waterlogging stress. (d) Distribution of ZmEREB180 binding sites in six target genes. (e) Design for gene editing of <i>ZmEREB180</i>. (f) Expression levels of <i>ZmEREB180</i> and its target genes in <i>zmereb180</i> mutants and B104 roots under normal (0 h) and waterlogging conditions (4 h). The gene expression values represent the mean derived from three independent biological replicates. (g) Phenotypes of <i>zmereb180</i> mutants and B104 under normal conditions and after 6 days of waterlogging, along with leaf and root characterization (h) and corresponding physiological responses, including POD and GST activity (i). (j, k) Luciferase activity of ZmEREB180 effector and its targets in maize protoplasts. (l) Electrophoretic mobility shift assay demonstrating the binding of ZmEREB180 to the promoters of its target genes. (m) Yeast two-hybrid assay to validate the interaction between <i>ZmEREB180</i> and ZmMPK1/ZmMPK3. (n) In vitro pull-down assay confirming the interaction between ZmEREB180 and ZmMPK1/ZmMPK3. (o) Split luciferase assay to further validate the interaction between ZmEREB180 and ZmMPK1/ZmMPK3. (p) Luciferase activity of ZmEREB180 effector combined with ZmMPK1, ZmMPK3, and their target genes in maize protoplasts. (q) Phenotypes of <i>ZmLBD5</i> overexpression lines and wild-type KN5585 under normal and 6 days of waterlogging conditions, along with root characterization (r). (s) Phenotypes of F1 hybrids derived from KN5585 and ZmLBD5#OE1 crossed with four inbred lines, under normal and 10 days of waterlogging conditions, along with leaf and root characterization (t). (u) Regulatory networks mediated by ZmEREB180.</div>\n</figcaption>\n</figure>\n<p>Two CRISPR/Cas9-generated mutants, <i>zmereb180</i>-1 and <i>zmereb180</i>-2, in maize line B104 were analysed (Figures 1e and S1). The expression level of <i>ZmLBD5</i>, <i>ZmLBD38</i> and the antioxidant genes was downregulated in both two mutants under waterlogging (Figure 1f; Table S3), indicating ZmEREB180 regulates these genes. No differences were observed between B104, <i>zmereb180</i>-1 and <i>zmereb180</i>-2 at the second leaf stage, but significant phenotypic differences were evident after 6 days of waterlogging treatment (Figures 1g and S2). Both mutants showed greater leaf injury, reduced root length, AR number, and AR length compared to B104 (Figure 1h). Increased POD and GST activity in B104 roots under waterlogging was diminished in the mutants (Figure 1i), supporting the role of <i>ZmEREB180</i> in waterlogging tolerance.</p>\n<p>To confirm the binding of ZmEREB180 to these targets, we performed dual luciferase reporter assays using 1.5-kb promoter fragments of <i>ZmLBD5</i>, <i>ZmLBD38</i>, <i>ZmGST8</i>, <i>ZmGST31</i>, <i>ZmPOD12</i> and <i>ZmPOD55</i> (Figure 1j). Co-transfection with ZmEREB180 in maize leaf protoplasts significantly enhanced the expression of all six genes, especially <i>ZmLBD5</i>, <i>ZmLBD38</i> and <i>ZmGST8</i> (Figures 1k and S3). Electrophoretic mobility shift assays (EMSAs) confirmed that ZmEREB180 binds directly to the GCC motifs in the promoters of these genes (Figures 1l and S4).</p>\n<p>A time-course transcriptome analysis of waterlogged roots in B73 seedlings revealed a significant enrichment of mitogen-activated protein kinase (MPK) signalling under stress (Yu <i>et al</i>., <span>2020</span>). Using a yeast two-hybrid assay, we identified two MPKs, ZmMPK1 and ZmMPK3, that interacted with ZmEREB180 (Figure 1m). GST pull-down assays confirmed that ZmEREB180 interacts with ZmMPK1 and ZmMPK3 in vitro (Figure 1n). A split luciferase assay further validated these interactions in plata (Figure 1o). Co-transfection of ZmMPK1 or ZmMPK3 with ZmEREB180 in maize leaf protoplasts significantly enhanced the activation of <i>ZmLBD5</i>, <i>ZmLBD38</i>, <i>ZmGST8</i>, <i>ZmGST31</i>, <i>ZmPOD12</i> and <i>ZmPOD55</i> promoters (Figure 1p), suggesting that ZmMPK1 and ZmMPK3 enhance ZmEREB180-mediated transcriptional activation.</p>\n<p>To access the functional role of ZmEREB180 target genes under waterlogging, we subjected <i>ZmLBD5</i> overexpression lines to waterlogging treatment. Overexpression lines, <i>ZmLBD5</i>#OE1 and <i>ZmLBD5</i>#OE2, showed significantly enhanced AR formation, seedling growth, and waterlogging tolerance after 6 days of stress, compared with wild-type KN5585 (Figures 1q, r, S5 and S6). F1 hybrids from a cross of <i>ZmLBD5</i>#OE1 and four maize inbred lines (B73, Huangzao4, Ye478 and ZHB12) also displayed improved waterlogging tolerance after 10 days of treatment (Figure 1s, t), with reduced leaf injury and enhanced root and seedling growth.</p>\n<p>Our findings highlight the critical role of <i>ZmEREB180</i> in regulating maize tolerance to waterlogging stress (Figure 1u). We demonstrate that <i>ZmEREB180</i> directly interacts with key genes such as <i>ZmLBD5</i>, <i>ZmLBD38</i>, <i>ZmGST8</i>, <i>ZmGST31</i>, <i>ZmPOD12</i> and <i>ZmPOD55</i>, positively modulating their expression under waterlogging. We also show that interactions with ZmMPK1 and ZmMPK3 enhance the activation of downstream target genes. Overexpression of <i>ZmLBD5</i> improves AR formation and waterlogging tolerance across different genetic backgrounds, making it a promising target for developing maize varieties with improved resilience to waterlogging, major abiotic stress affecting global maize production.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"86 2 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70030","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With climate change increasing the frequency of extreme weather events, waterlogging has become a significant threat to agricultural production, especially in maize-growing regions. Waterlogging induces hypoxic conditions in the root zone, limiting maize growth and yield (Liang et al., 2020; Pedersen et al., 2017). Plants have evolved adaptive mechanisms, such as adventitious root (AR) formation and enhanced antioxidant activity, to cope with waterlogging stress (Pedersen et al., 2021; Yamauchi et al., 2018). However, the regulatory mechanisms in maize remain poorly understood.

Group VII ethylene response factor proteins (ERFVIIs) are key regulators of waterlogging tolerance in model plants (Hartman et al., 2021). Our previous work showed that ZmEREB180, a maize ERFVII, promotes waterlogging tolerance by enhancing AR formation and modulating antioxidant levels (Yu et al., 2019). In this study, we cloned the full-length coding sequence of ZmEREB180 and inserted it into the pM999 vector. The recombinants and empty vector were transiently expressed in isolated B73 leaf protoplasts, followed by a transient and simplified cleavage under targets and tag-mentation (tsCUT&Tag) assay (Liang et al., 2024). A total of 4720 confident peaks corresponding to 3335 genes were identified (Table S1). Notably, 70.15% of these peaks were located in promoter regions, with 68.67% found in promoters less than 1 kb upstream (Figure 1a). The highest enrichment was observed at the transcription start site (Figure 1b). Motif analysis revealed the GCC-box (GCCGCC) as the highest scoring motif (E-value = 5.7 × 10−10). Compared with RNA-Seq data (Yu et al., 2019) identified 421 genes that were differentially expressed in the ZmEREB180 overexpression lines, under waterlogged conditions, and were directly bound by ZmEREB180 (Figure 1c; Table S2). We focused on genes involved in root development and antioxidant pathways. Lateral organ boundaries domain (LBD) proteins play pivotal roles in organ development. Two LBD genes, ZmLBD5 and ZmLBD38 (Table S2), were up-regulated in an overexpression line and under waterlogging conditions, in which ZmLBD5 has been shown to promote AR formation (Feng et al., 2022). Four antioxidant genes, including two glutathione-S-transferases (GST, ZmGST8 and ZmGST31) and two peroxidases (POD, ZmPOD12 and ZmPOD55), exhibited similar expression profiles (Table S2). The tsCUT&Tag data revealed significant peaks in the promoter of these genes (Figure 1d). Additionally, GCC-box motifs were located in these regions, suggesting direct regulation by ZmEREB180 under waterlogging conditions.

Abstract Image
Figure 1
Open in figure viewerPowerPoint
The regulatory networks of ZmEREB180 involved in maize waterlogging tolerance. (a) Distribution of identified peaks from ZmEREB180 tsCut&Tag. Two independent experiments were conducted and the overlapping genes were used for further analysis. (b) Peak profile flanking the 3-kb gene body. TSS, transcript start site; TTS, transcription termination site. (c) Overlap of genes identified by ZmEREB180 tsCut&Tag and differentially expressed genes in ZmEREB180 overexpression lines and in waterlogging stress. (d) Distribution of ZmEREB180 binding sites in six target genes. (e) Design for gene editing of ZmEREB180. (f) Expression levels of ZmEREB180 and its target genes in zmereb180 mutants and B104 roots under normal (0 h) and waterlogging conditions (4 h). The gene expression values represent the mean derived from three independent biological replicates. (g) Phenotypes of zmereb180 mutants and B104 under normal conditions and after 6 days of waterlogging, along with leaf and root characterization (h) and corresponding physiological responses, including POD and GST activity (i). (j, k) Luciferase activity of ZmEREB180 effector and its targets in maize protoplasts. (l) Electrophoretic mobility shift assay demonstrating the binding of ZmEREB180 to the promoters of its target genes. (m) Yeast two-hybrid assay to validate the interaction between ZmEREB180 and ZmMPK1/ZmMPK3. (n) In vitro pull-down assay confirming the interaction between ZmEREB180 and ZmMPK1/ZmMPK3. (o) Split luciferase assay to further validate the interaction between ZmEREB180 and ZmMPK1/ZmMPK3. (p) Luciferase activity of ZmEREB180 effector combined with ZmMPK1, ZmMPK3, and their target genes in maize protoplasts. (q) Phenotypes of ZmLBD5 overexpression lines and wild-type KN5585 under normal and 6 days of waterlogging conditions, along with root characterization (r). (s) Phenotypes of F1 hybrids derived from KN5585 and ZmLBD5#OE1 crossed with four inbred lines, under normal and 10 days of waterlogging conditions, along with leaf and root characterization (t). (u) Regulatory networks mediated by ZmEREB180.

Two CRISPR/Cas9-generated mutants, zmereb180-1 and zmereb180-2, in maize line B104 were analysed (Figures 1e and S1). The expression level of ZmLBD5, ZmLBD38 and the antioxidant genes was downregulated in both two mutants under waterlogging (Figure 1f; Table S3), indicating ZmEREB180 regulates these genes. No differences were observed between B104, zmereb180-1 and zmereb180-2 at the second leaf stage, but significant phenotypic differences were evident after 6 days of waterlogging treatment (Figures 1g and S2). Both mutants showed greater leaf injury, reduced root length, AR number, and AR length compared to B104 (Figure 1h). Increased POD and GST activity in B104 roots under waterlogging was diminished in the mutants (Figure 1i), supporting the role of ZmEREB180 in waterlogging tolerance.

To confirm the binding of ZmEREB180 to these targets, we performed dual luciferase reporter assays using 1.5-kb promoter fragments of ZmLBD5, ZmLBD38, ZmGST8, ZmGST31, ZmPOD12 and ZmPOD55 (Figure 1j). Co-transfection with ZmEREB180 in maize leaf protoplasts significantly enhanced the expression of all six genes, especially ZmLBD5, ZmLBD38 and ZmGST8 (Figures 1k and S3). Electrophoretic mobility shift assays (EMSAs) confirmed that ZmEREB180 binds directly to the GCC motifs in the promoters of these genes (Figures 1l and S4).

A time-course transcriptome analysis of waterlogged roots in B73 seedlings revealed a significant enrichment of mitogen-activated protein kinase (MPK) signalling under stress (Yu et al., 2020). Using a yeast two-hybrid assay, we identified two MPKs, ZmMPK1 and ZmMPK3, that interacted with ZmEREB180 (Figure 1m). GST pull-down assays confirmed that ZmEREB180 interacts with ZmMPK1 and ZmMPK3 in vitro (Figure 1n). A split luciferase assay further validated these interactions in plata (Figure 1o). Co-transfection of ZmMPK1 or ZmMPK3 with ZmEREB180 in maize leaf protoplasts significantly enhanced the activation of ZmLBD5, ZmLBD38, ZmGST8, ZmGST31, ZmPOD12 and ZmPOD55 promoters (Figure 1p), suggesting that ZmMPK1 and ZmMPK3 enhance ZmEREB180-mediated transcriptional activation.

To access the functional role of ZmEREB180 target genes under waterlogging, we subjected ZmLBD5 overexpression lines to waterlogging treatment. Overexpression lines, ZmLBD5#OE1 and ZmLBD5#OE2, showed significantly enhanced AR formation, seedling growth, and waterlogging tolerance after 6 days of stress, compared with wild-type KN5585 (Figures 1q, r, S5 and S6). F1 hybrids from a cross of ZmLBD5#OE1 and four maize inbred lines (B73, Huangzao4, Ye478 and ZHB12) also displayed improved waterlogging tolerance after 10 days of treatment (Figure 1s, t), with reduced leaf injury and enhanced root and seedling growth.

Our findings highlight the critical role of ZmEREB180 in regulating maize tolerance to waterlogging stress (Figure 1u). We demonstrate that ZmEREB180 directly interacts with key genes such as ZmLBD5, ZmLBD38, ZmGST8, ZmGST31, ZmPOD12 and ZmPOD55, positively modulating their expression under waterlogging. We also show that interactions with ZmMPK1 and ZmMPK3 enhance the activation of downstream target genes. Overexpression of ZmLBD5 improves AR formation and waterlogging tolerance across different genetic backgrounds, making it a promising target for developing maize varieties with improved resilience to waterlogging, major abiotic stress affecting global maize production.

随着气候变化导致极端天气事件频发,涝灾已成为农业生产的重大威胁,尤其是在玉米种植区。涝害导致根区缺氧,限制了玉米的生长和产量(Liang 等人,2020 年;Pedersen 等人,2017 年)。植物已进化出适应机制,如不定根(AR)的形成和抗氧化活性的增强,以应对水涝胁迫(Pedersen 等人,2021 年;Yamauchi 等人,2018 年)。然而,人们对玉米中的调控机制仍然知之甚少。第七组乙烯响应因子蛋白(ERFVIIs)是模式植物耐涝性的关键调控因子(Hartman 等人,2021 年)。我们之前的研究表明,玉米ERFVII ZmEREB180可通过增强AR形成和调节抗氧化剂水平来促进耐涝性(Yu等人,2019)。在本研究中,我们克隆了 ZmEREB180 的全长编码序列并将其插入 pM999 载体。重组子和空载体在分离的 B73 叶原生质体中进行瞬时表达,然后进行瞬时简化靶标下裂解和标记固定(tsCUT&amp;Tag)检测(Liang 等,2024 年)。共鉴定出与 3335 个基因相对应的 4720 个可信峰(表 S1)。值得注意的是,这些峰中有 70.15%位于启动子区域,其中 68.67%位于上游不到 1 kb 的启动子中(图 1a)。在转录起始位点观察到的富集度最高(图 1b)。基元分析显示,GCC-box(GCCGCC)是得分最高的基元(E 值 = 5.7 × 10-10)。与 RNA-Seq 数据相比(Yu 等人,2019 年),发现 421 个基因在 ZmEREB180 过表达系中、在水涝条件下有差异表达,并直接与 ZmEREB180 结合(图 1c;表 S2)。我们重点研究了参与根系发育和抗氧化途径的基因。侧器官边界域(LBD)蛋白在器官发育中起着关键作用。两个 LBD 基因 ZmLBD5 和 ZmLBD38(表 S2)在过表达株系和水涝条件下上调,ZmLBD5 已被证明能促进 AR 的形成(Feng 等,2022 年)。四个抗氧化基因,包括两个谷胱甘肽-S-转移酶(GST,ZmGST8 和 ZmGST31)和两个过氧化物酶(POD,ZmPOD12 和 ZmPOD55),表现出相似的表达谱(表 S2)。tsCUT&amp;Tag数据显示了这些基因启动子中的显著峰值(图 1d)。此外,GCC-box motifs 位于这些区域,表明在水涝条件下 ZmEREB180 可直接调控这些基因。(a) 从 ZmEREB180 tsCut&amp;Tag 中识别出的峰值分布。进行了两次独立实验,重叠基因用于进一步分析。(b) 3 kb 基因体侧翼的峰轮廓。TSS:转录起始位点;TTS:转录终止位点。(c) ZmEREB180 tsCut&amp;Tag 鉴定出的基因与 ZmEREB180 过表达株和水涝胁迫下差异表达基因的重叠。(d)ZmEREB180 结合位点在六个目标基因中的分布。(e) ZmEREB180 的基因编辑设计。(f) ZmEREB180 及其靶基因在正常(0 小时)和涝胁(4 小时)条件下在zmereb180 突变体和 B104 根中的表达水平。基因表达值代表三个独立生物重复的平均值。(g)正常条件下和水涝 6 天后,zmereb180 突变体和 B104 的表型,以及叶片和根的特征(h)和相应的生理反应,包括 POD 和 GST 活性(i)。(j、k)玉米原生质体中 ZmEREB180 作用子及其靶标的荧光素酶活性。(l)电泳迁移试验表明 ZmEREB180 与其靶基因的启动子结合。(m)酵母双杂交试验验证 ZmEREB180 与 ZmMPK1/ZmMPK3 之间的相互作用。 n)体外牵引试验证实 ZmEREB180 与 ZmMPK1/ZmMPK3 之间的相互作用。(o) 分离荧光素酶试验进一步验证 ZmEREB180 与 ZmMPK1/ZmMPK3 之间的相互作用。 (p) ZmEREB180 效应子与 ZmMPK1、ZmMPK3 及其靶基因在玉米原生质体中的荧光素酶活性。(q)ZmLBD5 过表达株系和野生型 KN5585 在正常和 6 天水涝条件下的表型以及根的特征(r)。(s)KN5585 和 ZmLBD5#OE1 与四个近交系杂交得到的 F1 杂交种在正常和 10 天水涝条件下的表现型,以及叶片和根的特征(t)。(分析了玉米品系 B104 的两个 CRISPR/Cas9 生成的突变体 zmereb180-1 和 zmereb180-2(图 1e 和 S1)。 在水涝条件下,ZmLBD5、ZmLBD38和抗氧化基因在两个突变体中的表达水平均下调(图1f;表S3),表明ZmEREB180调控了这些基因。在第二叶期,B104、zmereb180-1 和 zmereb180-2 之间没有观察到差异,但在水涝处理 6 天后,表型差异明显(图 1g 和 S2)。与 B104 相比,这两个突变体的叶片损伤更严重,根长、AR 数量和 AR 长度都有所减少(图 1h)。为了证实 ZmEREB180 与这些靶标的结合,我们使用 ZmLBD5、ZmLBD38、ZmGST8、ZmGST31、ZmPOD12 和 ZmPOD55 的 1.5-kb 启动子片段进行了双荧光素酶报告实验(图 1j)。在玉米叶原生质体中共转染 ZmEREB180 能显著提高所有六个基因的表达,尤其是 ZmLBD5、ZmLBD38 和 ZmGST8(图 1k 和 S3)。电泳迁移分析(EMSA)证实,ZmEREB180 可直接与这些基因启动子中的 GCC 基序结合(图 1l 和 S4)。对 B73 幼苗水涝根的时程转录组分析表明,在胁迫下,丝裂原活化蛋白激酶(MPK)信号显著增强(Yu 等人,2020 年)。通过酵母双杂交试验,我们确定了与 ZmEREB180 相互作用的两个 MPK,即 ZmMPK1 和 ZmMPK3(图 1m)。GST 牵引试验证实 ZmEREB180 在体外与 ZmMPK1 和 ZmMPK3 相互作用(图 1n)。分裂荧光素酶测定进一步验证了这些相互作用(图 1o)。玉米叶原生质体中 ZmMPK1 或 ZmMPK3 与 ZmEREB180 共转染可显著增强 ZmLBD5、ZmLBD38、ZmGST8、ZmGST31、ZmPOD12 和 ZmPOD55 启动子的激活(图 1p),表明 ZmMPK1 和 ZmMPK3 可增强 ZmEREB180 介导的转录激活。为了了解 ZmEREB180 靶基因在水涝条件下的功能作用,我们对 ZmLBD5 过表达株进行了水涝处理。与野生型KN5585相比,过表达株系ZmLBD5#OE1和ZmLBD5#OE2在胁迫6天后显示出显著增强的AR形成、幼苗生长和耐涝性(图1q、r、S5和S6)。ZmLBD5#OE1与四个玉米近交系(B73、黄早4号、Ye478和ZHB12)杂交的F1杂交种在处理10天后也表现出更强的耐涝性(图1s、t),叶片损伤减轻,根系和幼苗生长增强。我们证明 ZmEREB180 与 ZmLBD5、ZmLBD38、ZmGST8、ZmGST31、ZmPOD12 和 ZmPOD55 等关键基因直接相互作用,正向调节它们在涝害胁迫下的表达。我们还发现,与 ZmMPK1 和 ZmMPK3 的相互作用增强了下游靶基因的激活。在不同的遗传背景下,过表达ZmLBD5可改善AR的形成和耐涝性,使其成为开发抗涝能力更强的玉米品种的一个有希望的靶标,涝灾是影响全球玉米产量的主要非生物胁迫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信