Informed Neural Networks for Flood Forecasting With Limited Amount of Training Data

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
K. Komiya, H. Kiyotake, R. Nakada, M. Fujishima, K. Mori
{"title":"Informed Neural Networks for Flood Forecasting With Limited Amount of Training Data","authors":"K. Komiya, H. Kiyotake, R. Nakada, M. Fujishima, K. Mori","doi":"10.1029/2023wr036380","DOIUrl":null,"url":null,"abstract":"This study introduces a novel method called Informed Neural Networks (INNs), developed to enhance flood forecasting accuracy, particularly under limited data conditions. Accurate flood forecasts are crucial for timely evacuations, especially as heavy rainfall increasingly threatens areas previously unaffected by flooding. Traditional methods often require extensive data and frequent updates, making them costly and challenging to maintain. INNs address these challenges by enabling accurate predictions under limited data conditions. We propose an INN architecture for rivers in regions like Japan, where floods are predominantly caused by rainfall. We applied the INN to both rainfall-dominated and non-rainfall-dominated floods to evaluate its effectiveness and limitations. Our experiments show that the INN effectively integrates domain knowledge, maintains performance, and achieves lower prediction errors than ANN in data-scarce scenarios. These findings highlight the potential of INNs as a promising approach for future flood forecasting, particularly in data-limited environments.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"13 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr036380","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel method called Informed Neural Networks (INNs), developed to enhance flood forecasting accuracy, particularly under limited data conditions. Accurate flood forecasts are crucial for timely evacuations, especially as heavy rainfall increasingly threatens areas previously unaffected by flooding. Traditional methods often require extensive data and frequent updates, making them costly and challenging to maintain. INNs address these challenges by enabling accurate predictions under limited data conditions. We propose an INN architecture for rivers in regions like Japan, where floods are predominantly caused by rainfall. We applied the INN to both rainfall-dominated and non-rainfall-dominated floods to evaluate its effectiveness and limitations. Our experiments show that the INN effectively integrates domain knowledge, maintains performance, and achieves lower prediction errors than ANN in data-scarce scenarios. These findings highlight the potential of INNs as a promising approach for future flood forecasting, particularly in data-limited environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信