{"title":"Deferiprone inhibits virulence and biofilm formation in Burkholderia cenocepacia.","authors":"Zhi-Wen Ding, Kai-Zhong Xu, Owias Iqbal Dar, Lu-Jun Yin, Ying-Jie Wang, Yun-Tong Liao, Peng Wang, Ai-Qun Jia","doi":"10.1007/s00430-025-00824-4","DOIUrl":null,"url":null,"abstract":"<p><p>Burkholderia cenocepacia, an opportunistic pathogen, poses a significant threat to human health, necessitating the discovery of effective quorum sensing inhibitors (QSIs). In this study, the quorum sensing inhibitory effects of deferiprone (DFP) on the B. cenocepacia 162,638 were validated. Notably, DFP demonstrated an ability to inhibit and disrupt bacterial biofilms, reducing biofilm formation by 44.59% at 1/4 MIC (minimum inhibitory concentration) and 24.32% at 1/8 MIC concentrations. The study also investigated DFP's impact on motility, virulence, and QS signal levels. LC-MS/MS analysis showed a gradual reduction in the QS molecule C6-HSL as DFP concentrations increased. Additionally, DFP's non-hemolytic properties and safety profile, as verified in Galleria mellonella infection models, highlighted its biocompatibility. RT-qPCR results further indicated that DFP downregulated QS-related gene expression, particularly those involved in ferric uptake regulation protein (Fur). Molecular docking studies identified Fur as a key target for DFP's inhibitory action. Collectively, DFP was shown as a potential QSI with practical applications for controlling B. cenocepacia infections.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"214 1","pages":"15"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00430-025-00824-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Burkholderia cenocepacia, an opportunistic pathogen, poses a significant threat to human health, necessitating the discovery of effective quorum sensing inhibitors (QSIs). In this study, the quorum sensing inhibitory effects of deferiprone (DFP) on the B. cenocepacia 162,638 were validated. Notably, DFP demonstrated an ability to inhibit and disrupt bacterial biofilms, reducing biofilm formation by 44.59% at 1/4 MIC (minimum inhibitory concentration) and 24.32% at 1/8 MIC concentrations. The study also investigated DFP's impact on motility, virulence, and QS signal levels. LC-MS/MS analysis showed a gradual reduction in the QS molecule C6-HSL as DFP concentrations increased. Additionally, DFP's non-hemolytic properties and safety profile, as verified in Galleria mellonella infection models, highlighted its biocompatibility. RT-qPCR results further indicated that DFP downregulated QS-related gene expression, particularly those involved in ferric uptake regulation protein (Fur). Molecular docking studies identified Fur as a key target for DFP's inhibitory action. Collectively, DFP was shown as a potential QSI with practical applications for controlling B. cenocepacia infections.
期刊介绍:
Medical Microbiology and Immunology (MMIM) publishes key findings on all aspects of the interrelationship between infectious agents and the immune system of their hosts. The journal´s main focus is original research work on intrinsic, innate or adaptive immune responses to viral, bacterial, fungal and parasitic (protozoan and helminthic) infections and on the virulence of the respective infectious pathogens.
MMIM covers basic, translational as well as clinical research in infectious diseases and infectious disease immunology. Basic research using cell cultures, organoid, and animal models are welcome, provided that the models have a clinical correlate and address a relevant medical question.
The journal also considers manuscripts on the epidemiology of infectious diseases, including the emergence and epidemic spreading of pathogens and the development of resistance to anti-infective therapies, and on novel vaccines and other innovative measurements of prevention.
The following categories of manuscripts will not be considered for publication in MMIM:
submissions of preliminary work, of merely descriptive data sets without investigation of mechanisms or of limited global interest,
manuscripts on existing or novel anti-infective compounds, which focus on pharmaceutical or pharmacological aspects of the drugs,
manuscripts on existing or modified vaccines, unless they report on experimental or clinical efficacy studies or provide new immunological information on their mode of action,
manuscripts on the diagnostics of infectious diseases, unless they offer a novel concept to solve a pending diagnostic problem,
case reports or case series, unless they are embedded in a study that focuses on the anti-infectious immune response and/or on the virulence of a pathogen.