Study on the improvement of vegetated concrete substrate by biochar and limestone calcined clay cement.

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Na Chen, Zhenhua Guo, Shaoping Huang, Lihua Li, Henglin Xiao
{"title":"Study on the improvement of vegetated concrete substrate by biochar and limestone calcined clay cement.","authors":"Na Chen, Zhenhua Guo, Shaoping Huang, Lihua Li, Henglin Xiao","doi":"10.1080/09593330.2025.2473657","DOIUrl":null,"url":null,"abstract":"<p><p>Vegetated concrete has proven to be an effective technique for restoring the ecological environment of rocky slopes, but conventional formulations often suffer from excessive cement content and limited plant growth. This study proposes the use of biochar (BC) and limestone calcined clay cement (LC3) to form an improved vegetated concrete mix. Twenty-five different formulations were tested for their compressive and shear strength, pH values, and Bermuda grass growth. Microstructural studies using scanning electron microscopy (SEM). The results show that LC3 significantly increases the stress at small strains, while BC increases the strain at peak stresses. LC3 hydration produces cementitious material that coats soil particles, filling voids and leading to a linear increase in cohesion. The optimal mixture, with 12% LC3 and 6% BC, showed a 227% increase in cohesion and a 146% increase in internal friction angle. While LC3 increased pH, reducing the germination and growth performance of Bermuda grass, BC effectively improved these parameters, promoting faster and healthier plant growth. This study provides a reference for the application of LC3 and BC in future vegetated concrete development.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-13"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2473657","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Vegetated concrete has proven to be an effective technique for restoring the ecological environment of rocky slopes, but conventional formulations often suffer from excessive cement content and limited plant growth. This study proposes the use of biochar (BC) and limestone calcined clay cement (LC3) to form an improved vegetated concrete mix. Twenty-five different formulations were tested for their compressive and shear strength, pH values, and Bermuda grass growth. Microstructural studies using scanning electron microscopy (SEM). The results show that LC3 significantly increases the stress at small strains, while BC increases the strain at peak stresses. LC3 hydration produces cementitious material that coats soil particles, filling voids and leading to a linear increase in cohesion. The optimal mixture, with 12% LC3 and 6% BC, showed a 227% increase in cohesion and a 146% increase in internal friction angle. While LC3 increased pH, reducing the germination and growth performance of Bermuda grass, BC effectively improved these parameters, promoting faster and healthier plant growth. This study provides a reference for the application of LC3 and BC in future vegetated concrete development.

生物炭与石灰石煅烧粘土水泥对植被混凝土基材的改良研究。
植物混凝土已被证明是恢复岩质边坡生态环境的有效技术,但传统配方往往存在水泥含量过高和植物生长受限的问题。本研究提出使用生物炭(BC)和石灰石煅烧粘土水泥(LC3)来形成改良的植物混凝土混合料。测试了25种不同配方的抗压和抗剪强度、pH值和百慕大草的生长情况。使用扫描电子显微镜(SEM)进行微观结构研究。结果表明,LC3在小应变下显著增加应力,而BC在峰值应力下显著增加应变。LC3水化产生胶凝物质,覆盖土壤颗粒,填充空隙,导致凝聚力线性增加。当LC3含量为12%,BC含量为6%时,其粘聚力提高227%,内摩擦角提高146%。LC3增加pH值,降低百慕达草的发芽和生长性能,而BC有效改善了这些参数,促进了百慕达草更快、更健康的生长。本研究为LC3和BC在未来植物混凝土开发中的应用提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信