Denitrification efficiency and biofilm community succession in a bidirectional alternating influent biofilter.

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Lifei Wang, Jiajia Zhou, Jiaqing Xiong, Tuanping Hu, Qianhe Xia
{"title":"Denitrification efficiency and biofilm community succession in a bidirectional alternating influent biofilter.","authors":"Lifei Wang, Jiajia Zhou, Jiaqing Xiong, Tuanping Hu, Qianhe Xia","doi":"10.1080/09593330.2024.2448764","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilters are widely used for nitrogen removal in wastewater treatment. This study developed a bidirectional alternating-influent biofilter to reduce clogging and enhance nitrogen removal. Alternating influent utilized biofilm on the media as a denitrification carbon source. With initial ammonium, nitrate, and total nitrogen concentrations of 8.49±0.30, 12.52±0.20, and 19.89±0.79 mg/L, the forward influent achieved ammonium, nitrate, and total nitrogen removal efficiencies of 81.6%, 66.8%, and 71.2%, increasing by 13.3%, 3.0%, and 4.8% at the effluent. Reverse influent further boosted nitrate and total nitrogen removal by 14.0% and 5.5%. The natural DO gradient under conventional influent conditions was simulated, and the nitrogen removal mechanism and treatment effect, mainly nitrification and denitrification, were discussed. Microbial analysis showed that endogenous carbon in the biofilm, derived from decaying cells and EPS, reduced clogging risk. Significant changes in bacterial count, EPS content, and microbial abundance were observed across influent directions, with Proteobacteria, Bacteroidetes, and Pseudomonas increasing under reverse flow. These results indicate that bidirectional alternating influent can significantly improve nitrogen removal and reduce clogging, offering an effective optimization for wastewater treatment.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-15"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2448764","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Biofilters are widely used for nitrogen removal in wastewater treatment. This study developed a bidirectional alternating-influent biofilter to reduce clogging and enhance nitrogen removal. Alternating influent utilized biofilm on the media as a denitrification carbon source. With initial ammonium, nitrate, and total nitrogen concentrations of 8.49±0.30, 12.52±0.20, and 19.89±0.79 mg/L, the forward influent achieved ammonium, nitrate, and total nitrogen removal efficiencies of 81.6%, 66.8%, and 71.2%, increasing by 13.3%, 3.0%, and 4.8% at the effluent. Reverse influent further boosted nitrate and total nitrogen removal by 14.0% and 5.5%. The natural DO gradient under conventional influent conditions was simulated, and the nitrogen removal mechanism and treatment effect, mainly nitrification and denitrification, were discussed. Microbial analysis showed that endogenous carbon in the biofilm, derived from decaying cells and EPS, reduced clogging risk. Significant changes in bacterial count, EPS content, and microbial abundance were observed across influent directions, with Proteobacteria, Bacteroidetes, and Pseudomonas increasing under reverse flow. These results indicate that bidirectional alternating influent can significantly improve nitrogen removal and reduce clogging, offering an effective optimization for wastewater treatment.

双向交替进水生物滤池反硝化效率与生物膜群落演替。
生物滤池在污水处理中被广泛应用于脱氮。本研究开发了一种双向交替进水生物过滤器,以减少堵塞和提高氮的去除。交替进水利用培养基上的生物膜作为反硝化碳源。在初始铵态氮、硝态氮和总氮浓度分别为8.49±0.30、12.52±0.20和19.89±0.79 mg/L的条件下,正向进水的铵态氮、硝态氮和总氮去除率分别为81.6%、66.8%和71.2%,出水去除率分别提高13.3%、3.0%和4.8%。反向进水进一步提高了硝态氮和总氮去除率14.0%和5.5%。模拟了常规进水条件下的自然DO梯度,讨论了脱氮机理和处理效果,主要是硝化和反硝化。微生物分析表明,生物膜中来自腐烂细胞和EPS的内源性碳降低了堵塞风险。细菌数量、EPS含量和微生物丰度在进水方向上发生了显著变化,反向进水时变形菌门、拟杆菌门和假单胞菌增多。上述结果表明,双向交替进水可以显著提高氮的去除率,减少堵塞,为废水处理提供了有效的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信