Michael R Weaver, Dominika Shkoruta, Marta Pellegatta, Caterina Berti, Marilena Palmisano, Scott Ferguson, Edward Hurley, Julianne French, Shreya Patel, Sophie Belin, Matthias Selbach, Florian Ernst Paul, Fraser Sim, Yannick Poitelon, M Laura Feltri
{"title":"The STRIPAK complex is required for radial sorting and laminin receptor expression in Schwann cells.","authors":"Michael R Weaver, Dominika Shkoruta, Marta Pellegatta, Caterina Berti, Marilena Palmisano, Scott Ferguson, Edward Hurley, Julianne French, Shreya Patel, Sophie Belin, Matthias Selbach, Florian Ernst Paul, Fraser Sim, Yannick Poitelon, M Laura Feltri","doi":"10.1016/j.celrep.2025.115401","DOIUrl":null,"url":null,"abstract":"<p><p>During peripheral nervous system development, Schwann cells undergo Rac1-dependent cytoskeletal reorganization as they insert cytoplasmic extensions into axon bundles to sort and myelinate individual axons. However, our understanding of the direct effectors targeted by Rac1 is limited. Here, we demonstrate that striatin-3 and MOB4 are Rac1 interactors. We show that Schwann-cell-specific ablation of striatin-3 causes defects in lamellipodia formation, and conditional Schwann cell knockout for striatins presents a severe delay in radial sorting. Finally, we demonstrate that deletion of Rac1 or striatin-1/3 in Schwann cells causes defects in the activation of Hippo pathway effectors YAP and TAZ and the expression of genes co-regulated by YAP and TAZ, such as extracellular matrix receptors. In summary, our results indicate that striatin-3 is a Rac1 interactor and that striatins are required for peripheral nervous system development and reveal a role for Rac1 in the regulation of the Hippo pathway in Schwann cells.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 3","pages":"115401"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115401","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During peripheral nervous system development, Schwann cells undergo Rac1-dependent cytoskeletal reorganization as they insert cytoplasmic extensions into axon bundles to sort and myelinate individual axons. However, our understanding of the direct effectors targeted by Rac1 is limited. Here, we demonstrate that striatin-3 and MOB4 are Rac1 interactors. We show that Schwann-cell-specific ablation of striatin-3 causes defects in lamellipodia formation, and conditional Schwann cell knockout for striatins presents a severe delay in radial sorting. Finally, we demonstrate that deletion of Rac1 or striatin-1/3 in Schwann cells causes defects in the activation of Hippo pathway effectors YAP and TAZ and the expression of genes co-regulated by YAP and TAZ, such as extracellular matrix receptors. In summary, our results indicate that striatin-3 is a Rac1 interactor and that striatins are required for peripheral nervous system development and reveal a role for Rac1 in the regulation of the Hippo pathway in Schwann cells.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.