Functional differentiation of the default and frontoparietal control networks predicts individual differences in creative achievement: evidence from macroscale cortical gradients.

IF 2.9 2区 医学 Q2 NEUROSCIENCES
Tyler A Sassenberg, Rex E Jung, Colin G DeYoung
{"title":"Functional differentiation of the default and frontoparietal control networks predicts individual differences in creative achievement: evidence from macroscale cortical gradients.","authors":"Tyler A Sassenberg, Rex E Jung, Colin G DeYoung","doi":"10.1093/cercor/bhaf046","DOIUrl":null,"url":null,"abstract":"<p><p>Much of the research on the neural correlates of creativity has emphasized creative cognition, and growing evidence suggests that creativity is related to functional properties of the default and frontoparietal control networks. The present work expands on this body of evidence by testing associations of creative achievement with connectivity profiles of brain networks assessed using macroscale cortical gradients. Using resting-state connectivity functional magnetic resonance imaging in 2 community samples (N's = 236 and 234), we found evidence that creative achievement is positively associated with greater functional dissimilarity between core regions of the default and frontoparietal control networks. These results suggest that creative achievement is supported by the ability of these 2 networks to carry out distinct cognitive roles. This research provides further evidence, using a cortical gradient approach, that individual differences in creative achievement can be predicted from functional properties of brain networks involved in higher-order cognition, and it aligns with past research on the functional connectivity correlates of creative task performance.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890067/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf046","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Much of the research on the neural correlates of creativity has emphasized creative cognition, and growing evidence suggests that creativity is related to functional properties of the default and frontoparietal control networks. The present work expands on this body of evidence by testing associations of creative achievement with connectivity profiles of brain networks assessed using macroscale cortical gradients. Using resting-state connectivity functional magnetic resonance imaging in 2 community samples (N's = 236 and 234), we found evidence that creative achievement is positively associated with greater functional dissimilarity between core regions of the default and frontoparietal control networks. These results suggest that creative achievement is supported by the ability of these 2 networks to carry out distinct cognitive roles. This research provides further evidence, using a cortical gradient approach, that individual differences in creative achievement can be predicted from functional properties of brain networks involved in higher-order cognition, and it aligns with past research on the functional connectivity correlates of creative task performance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cerebral cortex
Cerebral cortex 医学-神经科学
CiteScore
6.30
自引率
8.10%
发文量
510
审稿时长
2 months
期刊介绍: Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included. The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信