Connor Edvall, Narendra Kale, Sakurako Tani, Shubhashri Ambhore, Rayat Hossain, Chukwuebuka Ozoude, Karl Van Horsen, Jiyan Mohammad, Daniel M Tuvin, Santo Kalathingal, Jagadish Loganathan, Yongki Choi, Venkatachalem Sathish, James Brown, Sanku Mallik
{"title":"Hypoxia-Responsive Polymersomes for Stemness Reduction in Patient-Derived Solid Tumor Spheroids.","authors":"Connor Edvall, Narendra Kale, Sakurako Tani, Shubhashri Ambhore, Rayat Hossain, Chukwuebuka Ozoude, Karl Van Horsen, Jiyan Mohammad, Daniel M Tuvin, Santo Kalathingal, Jagadish Loganathan, Yongki Choi, Venkatachalem Sathish, James Brown, Sanku Mallik","doi":"10.1021/acsabm.4c01735","DOIUrl":null,"url":null,"abstract":"<p><p>Aggressive solid tumors are associated with rapid growth, early hypoxia, a lack of targeted therapies, and a poor prognosis. The hypoxic niches within the rapidly growing solid tumors give rise to a stem-cell-like phenotype with higher metastasis and drug resistance. To overcome the drug resistance of these regions, we used hypoxia-responsive polymersomes with an encapsulated anticancer drug (doxorubicin, Dox) and a stemness modulator (all-trans retinoic acid, ATRA). Reductase enzymes overexpressed in hypoxia reduce the azobenzene linker of the polymers, disrupt the bilayer structure of the polymersomes, and release the encapsulated drugs. We used triple-negative breast cancer (TNBC) as a representative of aggressive and hypoxic solid tumors. We observed that ATRA synergistically enhanced the efficacy of Dox in killing cancer cells. A synergistic combination of the two drug-encapsulated polymersomes reduced the volumes of patient-derived TNBC spheroids by 90%. In contrast, Dox alone decreased the spheroid volumes by 70% and encapsulated ATRA by 19%. Mechanistic studies revealed that ATRA inhibited efflux pumps, leading to a higher concentration of doxorubicin within TNBC cells. In addition, the combination of encapsulated Dox and ATRA significantly decreased stemness expression of the TNBC cells in hypoxia compared to that of Dox alone.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Aggressive solid tumors are associated with rapid growth, early hypoxia, a lack of targeted therapies, and a poor prognosis. The hypoxic niches within the rapidly growing solid tumors give rise to a stem-cell-like phenotype with higher metastasis and drug resistance. To overcome the drug resistance of these regions, we used hypoxia-responsive polymersomes with an encapsulated anticancer drug (doxorubicin, Dox) and a stemness modulator (all-trans retinoic acid, ATRA). Reductase enzymes overexpressed in hypoxia reduce the azobenzene linker of the polymers, disrupt the bilayer structure of the polymersomes, and release the encapsulated drugs. We used triple-negative breast cancer (TNBC) as a representative of aggressive and hypoxic solid tumors. We observed that ATRA synergistically enhanced the efficacy of Dox in killing cancer cells. A synergistic combination of the two drug-encapsulated polymersomes reduced the volumes of patient-derived TNBC spheroids by 90%. In contrast, Dox alone decreased the spheroid volumes by 70% and encapsulated ATRA by 19%. Mechanistic studies revealed that ATRA inhibited efflux pumps, leading to a higher concentration of doxorubicin within TNBC cells. In addition, the combination of encapsulated Dox and ATRA significantly decreased stemness expression of the TNBC cells in hypoxia compared to that of Dox alone.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.