Marcos Antonio Bergant, Sergio Raúl Soria, Raúl Ignacio Bustos, Hugo Ramón Soul, Alejandro Andrés Yawny
{"title":"On the Relative Significance of Roughness, Printing Defects and Microstructure on the Fatigue Behavior of Electron Beam Melted Ti-6Al-4V","authors":"Marcos Antonio Bergant, Sergio Raúl Soria, Raúl Ignacio Bustos, Hugo Ramón Soul, Alejandro Andrés Yawny","doi":"10.1111/ffe.14565","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In contrast, but complementary to previous studies, this study examines the fatigue behavior in Ti-6Al-4V obtained by electron beam powder bed fusion, focusing on damage initiation sites, fatigue damage progression, and correlating these with fatigue life curves. Three material conditions were considered: as-built specimens with original surfaces after printing (AB), as-built specimens with a machined and polished surface (MP), and hot isostatic pressed specimens with a machined and polished surface (H). Fatigue fracture surface topography was analyzed using scanning electron microscopy and surface metrology microscopy. Different fatigue responses were observed, with crack initiation at surface roughness in AB, lack of fusion defects in MP, and phase facet formation in H specimens. Interaction between cracks and manufacturing defects was investigated. Kitagawa-Takahashi diagrams were applied successfully to AB and MP specimens. This study aims to enhance understanding of crack initiation and interaction mechanisms, improving life prediction capabilities through microstructure and defect-sensitive modeling.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 4","pages":"1647-1666"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14565","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In contrast, but complementary to previous studies, this study examines the fatigue behavior in Ti-6Al-4V obtained by electron beam powder bed fusion, focusing on damage initiation sites, fatigue damage progression, and correlating these with fatigue life curves. Three material conditions were considered: as-built specimens with original surfaces after printing (AB), as-built specimens with a machined and polished surface (MP), and hot isostatic pressed specimens with a machined and polished surface (H). Fatigue fracture surface topography was analyzed using scanning electron microscopy and surface metrology microscopy. Different fatigue responses were observed, with crack initiation at surface roughness in AB, lack of fusion defects in MP, and phase facet formation in H specimens. Interaction between cracks and manufacturing defects was investigated. Kitagawa-Takahashi diagrams were applied successfully to AB and MP specimens. This study aims to enhance understanding of crack initiation and interaction mechanisms, improving life prediction capabilities through microstructure and defect-sensitive modeling.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.