Investigation on the Effect of Initial Damage on the Time-Dependent Deformation of Rock Materials Under Step Loading

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Ling Zhu, Tiantao Li, Xiangjun Pei, Peng Xue, Yufei Liang
{"title":"Investigation on the Effect of Initial Damage on the Time-Dependent Deformation of Rock Materials Under Step Loading","authors":"Ling Zhu,&nbsp;Tiantao Li,&nbsp;Xiangjun Pei,&nbsp;Peng Xue,&nbsp;Yufei Liang","doi":"10.1111/ffe.14586","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Investigating the creep properties of damaged rocks is essential for evaluating the long-term stability of seismically cracked slopes in earthquake-prone regions. In this study, cyclic loading-unloading and step creep loading tests were sequentially performed on metamorphic sandstone, granite, and phyllite. Dissipated energy was introduced to establish the initial damage model, and the effect patterns and mechanisms of initial damage on creep properties were analyzed. The experimental results showed that dissipated energy and the damage variable increased linearly with the number of loading-unloading cycles. The increase in initial damage results in greater creep strain, higher steady-state creep rate, and increased dissipated energy under the same creep loading, while reducing the long-term strength of the rock. Prior loading-unloading promoted the development of microcracks and accelerated the time-dependent deformation of the rock. This study provides a new understanding of the long-term stability of seismically cracked slopes in strong-earthquake mountainous areas.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 4","pages":"1819-1832"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14586","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Investigating the creep properties of damaged rocks is essential for evaluating the long-term stability of seismically cracked slopes in earthquake-prone regions. In this study, cyclic loading-unloading and step creep loading tests were sequentially performed on metamorphic sandstone, granite, and phyllite. Dissipated energy was introduced to establish the initial damage model, and the effect patterns and mechanisms of initial damage on creep properties were analyzed. The experimental results showed that dissipated energy and the damage variable increased linearly with the number of loading-unloading cycles. The increase in initial damage results in greater creep strain, higher steady-state creep rate, and increased dissipated energy under the same creep loading, while reducing the long-term strength of the rock. Prior loading-unloading promoted the development of microcracks and accelerated the time-dependent deformation of the rock. This study provides a new understanding of the long-term stability of seismically cracked slopes in strong-earthquake mountainous areas.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信