{"title":"Electrochemical Sensing of Paracetamol Using Functionalized MWCNTs: Integrating Computational and Experimental Methods","authors":"Amit Lochab, Shefali Baweja, Kajal Jindal, Arijit Chowdhuri, Monika Tomar, Reena Saxena","doi":"10.1002/anse.202400098","DOIUrl":null,"url":null,"abstract":"<p>An electrochemical sensing platform for the detection of paracetamol is proposed in this work. The sensor (Asp-MWCNTs/IL/ITO) is based on Indium Tin Oxide (ITO) electrode loaded with asparagine functionalised Multi Walled Carbon Nanotubes (MWCNTs) and Ionic Liquid (IL). Initially, <i>in-silico</i> studies were performed to check the favourable interaction of the drug with the nanocomposite. The potential energy surface of Asp-MWCNTs and paracetamol complexes were explored using density functional theory and single-point energy coupled cluster calculations. The analysis of non-covalent interactions showed hydrogen bonding interactions predominantly stabilising the complex. The interaction process between Asp-MWCNTs and paracetamol is spontaneous due to negative value of binding energy (−0.75 eV). The functionalised MWCNTs were characterised through different techniques. Asp-MWCNTs/IL/ITO electrode showed good sensitivity with a linear range from 20–300 μgL<sup>−1</sup> and limit of detection of 0.0194 μM for paracetamol in phosphate buffer as supporting electrolyte. The sensor showed excellent repeatability and reproducibility with a relative standard deviation of 1.45 % at 60 μgL<sup>−1</sup> concentration. The chemical functionalization resulted in providing extra stability as it retained 95 % of its signal response even after 45 days. The sensor's applicability was tested in real water samples with the help of spiking study which showed good recovery >95 %.”</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"5 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & sensing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anse.202400098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An electrochemical sensing platform for the detection of paracetamol is proposed in this work. The sensor (Asp-MWCNTs/IL/ITO) is based on Indium Tin Oxide (ITO) electrode loaded with asparagine functionalised Multi Walled Carbon Nanotubes (MWCNTs) and Ionic Liquid (IL). Initially, in-silico studies were performed to check the favourable interaction of the drug with the nanocomposite. The potential energy surface of Asp-MWCNTs and paracetamol complexes were explored using density functional theory and single-point energy coupled cluster calculations. The analysis of non-covalent interactions showed hydrogen bonding interactions predominantly stabilising the complex. The interaction process between Asp-MWCNTs and paracetamol is spontaneous due to negative value of binding energy (−0.75 eV). The functionalised MWCNTs were characterised through different techniques. Asp-MWCNTs/IL/ITO electrode showed good sensitivity with a linear range from 20–300 μgL−1 and limit of detection of 0.0194 μM for paracetamol in phosphate buffer as supporting electrolyte. The sensor showed excellent repeatability and reproducibility with a relative standard deviation of 1.45 % at 60 μgL−1 concentration. The chemical functionalization resulted in providing extra stability as it retained 95 % of its signal response even after 45 days. The sensor's applicability was tested in real water samples with the help of spiking study which showed good recovery >95 %.”