Spaces of maps between real algebraic varieties

IF 0.8 3区 数学 Q2 MATHEMATICS
Wojciech Kucharz
{"title":"Spaces of maps between real algebraic varieties","authors":"Wojciech Kucharz","doi":"10.1112/blms.13220","DOIUrl":null,"url":null,"abstract":"<p>Given two real algebraic varieties <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math>, we denote by <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {R}(X,Y)$</annotation>\n </semantics></math> the set of all regular maps from <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math>. The set <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {R}(X,Y)$</annotation>\n </semantics></math> is regarded as a topological subspace of the space <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {C}(X,Y)$</annotation>\n </semantics></math> of all continuous maps from <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> endowed with the compact-open topology. We prove, in a much more general setting than previously considered, that each path component of <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {C}(X,Y)$</annotation>\n </semantics></math> contains at most one path component of <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {R}(X,Y)$</annotation>\n </semantics></math>, and for every positive integer <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> the inclusion map <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>)</mo>\n <mo>↪</mo>\n <mi>C</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {R}(X,Y)\\hookrightarrow \\mathcal {C}(X,Y)$</annotation>\n </semantics></math> induces an isomorphism between the <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>th homotopy groups of the corresponding path components. We also identify several cases where this inclusion map is a weak homotopy equivalence.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 3","pages":"669-680"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13220","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given two real algebraic varieties X $X$ and Y $Y$ , we denote by R ( X , Y ) $\mathcal {R}(X,Y)$ the set of all regular maps from X $X$ to Y $Y$ . The set R ( X , Y ) $\mathcal {R}(X,Y)$ is regarded as a topological subspace of the space C ( X , Y ) $\mathcal {C}(X,Y)$ of all continuous maps from X $X$ to Y $Y$ endowed with the compact-open topology. We prove, in a much more general setting than previously considered, that each path component of C ( X , Y ) $\mathcal {C}(X,Y)$ contains at most one path component of R ( X , Y ) $\mathcal {R}(X,Y)$ , and for every positive integer k $k$ the inclusion map R ( X , Y ) C ( X , Y ) $\mathcal {R}(X,Y)\hookrightarrow \mathcal {C}(X,Y)$ induces an isomorphism between the k $k$ th homotopy groups of the corresponding path components. We also identify several cases where this inclusion map is a weak homotopy equivalence.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信