Mabuchi Kähler solitons versus extremal Kähler metrics and beyond

IF 0.8 3区 数学 Q2 MATHEMATICS
Vestislav Apostolov, Abdellah Lahdili, Yasufumi Nitta
{"title":"Mabuchi Kähler solitons versus extremal Kähler metrics and beyond","authors":"Vestislav Apostolov,&nbsp;Abdellah Lahdili,&nbsp;Yasufumi Nitta","doi":"10.1112/blms.13222","DOIUrl":null,"url":null,"abstract":"<p>Using the Yau–Tian–Donaldson type correspondence for <span></span><math>\n <semantics>\n <mi>v</mi>\n <annotation>$v$</annotation>\n </semantics></math>-solitons established by Han–Li, we show that a smooth complex <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-dimensional Fano variety admits a Mabuchi soliton provided it admits an extremal Kähler metric whose scalar curvature is strictly less than <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>(</mo>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$2(n+1)$</annotation>\n </semantics></math>. Combined with previous observations by Mabuchi and Nakamura in the other direction, this gives a characterization of the existence of Mabuchi solitons in terms of the existence of extremal Kähler metrics on Fano manifolds. An extension of this correspondence to <span></span><math>\n <semantics>\n <mi>v</mi>\n <annotation>$v$</annotation>\n </semantics></math>-solitons is also obtained.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 3","pages":"692-710"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13222","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13222","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Using the Yau–Tian–Donaldson type correspondence for v $v$ -solitons established by Han–Li, we show that a smooth complex n $n$ -dimensional Fano variety admits a Mabuchi soliton provided it admits an extremal Kähler metric whose scalar curvature is strictly less than 2 ( n + 1 ) $2(n+1)$ . Combined with previous observations by Mabuchi and Nakamura in the other direction, this gives a characterization of the existence of Mabuchi solitons in terms of the existence of extremal Kähler metrics on Fano manifolds. An extension of this correspondence to v $v$ -solitons is also obtained.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信