FFT-Based Phase-Field Fracture Modeling of Periodic Inhomogeneous Microstructures

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Tom Schneider, Markus Kästner
{"title":"FFT-Based Phase-Field Fracture Modeling of Periodic Inhomogeneous Microstructures","authors":"Tom Schneider,&nbsp;Markus Kästner","doi":"10.1111/ffe.14553","DOIUrl":null,"url":null,"abstract":"<p>The failure of inhomogeneous microstructures is of increasing relevance, driven by the future need for tailored materials and the significant influence of microstructure on macroscopic properties. The phase-field method for fracture has proven to be a versatile tool for predicting unknown crack paths and failure mechanisms. In this contribution, we propose a phase-field model for fracture of periodic heterogeneous microstructures in a general finite strain setting. To overcome the bottleneck of scalability, we employ powerful and scalable solvers based on the fast Fourier transform (FFT). We demonstrate the capability of the model using the fundamental example of brittle fracture. A thorough comparison with conventional finite element method (FEM) reference results is carried out using a simple reference geometry. The results obtained show quantitative agreement between both numerical methods. Parameter studies provide recommendations for the choice of the numerical parameters. Following the comparison, we apply the FFT-based method to synthetic inhomogeneous microstructures, with a special emphasis of the investigation on scalability with increasing degrees of freedom and robustness of the method. The results of 2D and 3D simulations are promising, paving the way for future extensions in inverse materials design, for example, for metallic microstructures.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 4","pages":"1782-1805"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14553","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14553","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The failure of inhomogeneous microstructures is of increasing relevance, driven by the future need for tailored materials and the significant influence of microstructure on macroscopic properties. The phase-field method for fracture has proven to be a versatile tool for predicting unknown crack paths and failure mechanisms. In this contribution, we propose a phase-field model for fracture of periodic heterogeneous microstructures in a general finite strain setting. To overcome the bottleneck of scalability, we employ powerful and scalable solvers based on the fast Fourier transform (FFT). We demonstrate the capability of the model using the fundamental example of brittle fracture. A thorough comparison with conventional finite element method (FEM) reference results is carried out using a simple reference geometry. The results obtained show quantitative agreement between both numerical methods. Parameter studies provide recommendations for the choice of the numerical parameters. Following the comparison, we apply the FFT-based method to synthetic inhomogeneous microstructures, with a special emphasis of the investigation on scalability with increasing degrees of freedom and robustness of the method. The results of 2D and 3D simulations are promising, paving the way for future extensions in inverse materials design, for example, for metallic microstructures.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信