Investigations on Fatigue Life of Ball Pin After Laser Shock Peening

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Jan Kaufman, Miloš Křivan, Martin Petrenec, Libor Mrňa, Sunil Pathak, Jan Šmaus, Jan Brajer, Tomáš Mocek
{"title":"Investigations on Fatigue Life of Ball Pin After Laser Shock Peening","authors":"Jan Kaufman,&nbsp;Miloš Křivan,&nbsp;Martin Petrenec,&nbsp;Libor Mrňa,&nbsp;Sunil Pathak,&nbsp;Jan Šmaus,&nbsp;Jan Brajer,&nbsp;Tomáš Mocek","doi":"10.1111/ffe.14588","DOIUrl":null,"url":null,"abstract":"<p>In the present work, laser shock peening (LSP) was applied on critical areas of ball pins made of 41CrS4 steel to extend their fatigue life. The treatment introduced compressive residual stresses up to a depth of 1 mm with maximum value of −592 MPa on the ball pin surface. This led to a suppression of fretting fatigue in the conical section of the ball pin under lower stress amplitudes and overall fatigue life improvement by a factor of 2.4. After LSP, the crack propagation speed was slowed down to 0.001 μm/cycle down from 0.1 μm/cycle. At high stress amplitudes, the location of the main fatigue crack shifted into a notched part of the ball pin. The combined effect of high stress amplitude and stress concentration changed the elastic strain dominated high cycle fatigue to plastic strain dominated low cycle fatigue where the LSP treatment had no significant impact on the fatigue life.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 4","pages":"1758-1767"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14588","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14588","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, laser shock peening (LSP) was applied on critical areas of ball pins made of 41CrS4 steel to extend their fatigue life. The treatment introduced compressive residual stresses up to a depth of 1 mm with maximum value of −592 MPa on the ball pin surface. This led to a suppression of fretting fatigue in the conical section of the ball pin under lower stress amplitudes and overall fatigue life improvement by a factor of 2.4. After LSP, the crack propagation speed was slowed down to 0.001 μm/cycle down from 0.1 μm/cycle. At high stress amplitudes, the location of the main fatigue crack shifted into a notched part of the ball pin. The combined effect of high stress amplitude and stress concentration changed the elastic strain dominated high cycle fatigue to plastic strain dominated low cycle fatigue where the LSP treatment had no significant impact on the fatigue life.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信