Estimates for smooth Weyl sums on minor arcs

IF 0.8 3区 数学 Q2 MATHEMATICS
Jörg Brüdern, Trevor D. Wooley
{"title":"Estimates for smooth Weyl sums on minor arcs","authors":"Jörg Brüdern,&nbsp;Trevor D. Wooley","doi":"10.1112/blms.13219","DOIUrl":null,"url":null,"abstract":"<p>We provide new estimates for smooth Weyl sums on minor arcs and explore their consequences for the distribution of the fractional parts of <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <msup>\n <mi>n</mi>\n <mi>k</mi>\n </msup>\n </mrow>\n <annotation>$\\alpha n^k$</annotation>\n </semantics></math>. In particular, when <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>⩾</mo>\n <mn>6</mn>\n </mrow>\n <annotation>$k\\geqslant 6$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\rho (k)$</annotation>\n </semantics></math> is defined via the relation <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>=</mo>\n <mi>k</mi>\n <mrow>\n <mo>(</mo>\n <mi>log</mi>\n <mi>k</mi>\n <mo>+</mo>\n <mn>8.02113</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\rho (k)^{-1}=k(\\log k+8.02113)$</annotation>\n </semantics></math>, then for all large numbers <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> there is an integer <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>n</mi>\n <mo>⩽</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$1\\leqslant n\\leqslant N$</annotation>\n </semantics></math> for which <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>∥</mo>\n <mi>α</mi>\n </mrow>\n <msup>\n <mi>n</mi>\n <mi>k</mi>\n </msup>\n <mrow>\n <mo>∥</mo>\n <mo>⩽</mo>\n </mrow>\n <msup>\n <mi>N</mi>\n <mrow>\n <mo>−</mo>\n <mi>ρ</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\Vert \\alpha n^k\\Vert \\leqslant N^{-\\rho (k)}$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 3","pages":"657-668"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13219","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13219","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide new estimates for smooth Weyl sums on minor arcs and explore their consequences for the distribution of the fractional parts of α n k $\alpha n^k$ . In particular, when k 6 $k\geqslant 6$ and ρ ( k ) $\rho (k)$ is defined via the relation ρ ( k ) 1 = k ( log k + 8.02113 ) $\rho (k)^{-1}=k(\log k+8.02113)$ , then for all large numbers N $N$ there is an integer n $n$ with 1 n N $1\leqslant n\leqslant N$ for which α n k N ρ ( k ) $\Vert \alpha n^k\Vert \leqslant N^{-\rho (k)}$ .

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信