A dominant plant species and insects interactively shape plant community structure and an ecosystem function

IF 2.7 3区 环境科学与生态学 Q2 ECOLOGY
Ecosphere Pub Date : 2025-03-09 DOI:10.1002/ecs2.70201
Julia N. Eckberg, Akane Hubbard, Nathan J. Sanders
{"title":"A dominant plant species and insects interactively shape plant community structure and an ecosystem function","authors":"Julia N. Eckberg,&nbsp;Akane Hubbard,&nbsp;Nathan J. Sanders","doi":"10.1002/ecs2.70201","DOIUrl":null,"url":null,"abstract":"<p>Dominant plants and insects both structure plant communities and determine key ecosystem functions. However, dominant plants and insects can have opposing effects on plant community structure and ecosystem function. Critically, few studies have assessed the combined effects of these two drivers of plant community structure and ecosystem function. In this study, we factorially manipulated the presence of the dominant plant species <i>Solidago canadensis</i> (Canada goldenrod) and insects in an old field to quantify their independent and interactive effects on the plant community. Overall, insect presence mediated the effects of <i>S. canadensis</i> removal on plant biomass and richness. Total plant biomass was ~32% lower following <i>S. canadensis</i> removal only when insects were present. In contrast, subdominant plant biomass was ~75% higher following <i>S. canadensis</i> removal, but only when insects were reduced. Subdominant species richness was ~37% higher following <i>S. canadensis</i> removal when insects were present, although the abundance of most subdominant species did not vary systematically with <i>S. canadensis</i> removal or insect reduction. Light availability was ~49% higher following <i>S. canadensis</i> removal, with no effect of insect presence on light availability. Our results emphasize the interactive role of dominant plants and insects in determining the diversity and biomass of plant communities.</p>","PeriodicalId":48930,"journal":{"name":"Ecosphere","volume":"16 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.70201","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosphere","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.70201","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dominant plants and insects both structure plant communities and determine key ecosystem functions. However, dominant plants and insects can have opposing effects on plant community structure and ecosystem function. Critically, few studies have assessed the combined effects of these two drivers of plant community structure and ecosystem function. In this study, we factorially manipulated the presence of the dominant plant species Solidago canadensis (Canada goldenrod) and insects in an old field to quantify their independent and interactive effects on the plant community. Overall, insect presence mediated the effects of S. canadensis removal on plant biomass and richness. Total plant biomass was ~32% lower following S. canadensis removal only when insects were present. In contrast, subdominant plant biomass was ~75% higher following S. canadensis removal, but only when insects were reduced. Subdominant species richness was ~37% higher following S. canadensis removal when insects were present, although the abundance of most subdominant species did not vary systematically with S. canadensis removal or insect reduction. Light availability was ~49% higher following S. canadensis removal, with no effect of insect presence on light availability. Our results emphasize the interactive role of dominant plants and insects in determining the diversity and biomass of plant communities.

Abstract Image

优势植物和昆虫相互作用,形成植物群落结构和生态系统功能
优势植物和昆虫既构成植物群落,又决定关键的生态系统功能。然而,优势植物和优势昆虫对植物群落结构和生态系统功能的影响是相反的。关键的是,很少有研究评估这两个驱动因素对植物群落结构和生态系统功能的综合影响。本研究以加拿大一枝黄花(Solidago canadensis,加拿大一枝黄花)和昆虫为研究对象,通过因子处理,量化其对植物群落的独立和交互作用。总体而言,昆虫的存在介导了加拿大蒺藜去除对植物生物量和丰富度的影响。除去加拿大藜后,仅当昆虫存在时,植物总生物量降低了约32%。相比之下,去除加拿大藜后,亚优势植物生物量增加了约75%,但仅当昆虫减少时。除虫后,多数亚优势种的丰富度不随除虫或除虫而系统变化,但亚优势种丰富度比除虫后高37%。去除加拿大紫穗草后,光利用率提高了约49%,昆虫的存在对光利用率没有影响。我们的研究结果强调优势植物和昆虫在决定植物群落多样性和生物量方面的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecosphere
Ecosphere ECOLOGY-
CiteScore
4.70
自引率
3.70%
发文量
378
审稿时长
15 weeks
期刊介绍: The scope of Ecosphere is as broad as the science of ecology itself. The journal welcomes submissions from all sub-disciplines of ecological science, as well as interdisciplinary studies relating to ecology. The journal''s goal is to provide a rapid-publication, online-only, open-access alternative to ESA''s other journals, while maintaining the rigorous standards of peer review for which ESA publications are renowned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信