Yoonjoo Kang, Hyeongtaek Park, Surim Shim, Gul Karima, Subeen Lee, Kisuk Yang, Hwan D. Kim
{"title":"MXene Nanoparticles: Orchestrating Spherioidogenesis for Targeted Osteogenic and Neurogenic Differentiation","authors":"Yoonjoo Kang, Hyeongtaek Park, Surim Shim, Gul Karima, Subeen Lee, Kisuk Yang, Hwan D. Kim","doi":"10.1002/anbr.202400100","DOIUrl":null,"url":null,"abstract":"<p>\nMXenes represent a new class of 2D materials and exhibit unique properties that render them promising candidates for biomedical applications. MXenes can interact with cell membranes and modulate cell junction interactions, thereby influencing stem cell fate. While previous studies have demonstrated their potential to induce cell differentiation, research on their effects on stem cell spheroid growth and differentiation capacity is limited. This study investigates the ability of MXenes to induce cell differentiation using spheroids, which mimic the in vivo 3D microenvironment and hold significance for bone and nerve regeneration. MXene-induced spheroids of human adipose-derived mesenchymal stem cells (hADSCs) and human neural stem cells (hNSCs) rapidly aggregate, indicating MXene's role in spheroid formation. The differentiation of these spheroids confirms MXene's ability to induce specific cell types: hADSC spheroids show enhanced osteogenic differentiation at a 5 μg mL<sup>−1</sup> concentration, while hNSC spheroids require higher concentrations (20 μg mL<sup>−1</sup>) for neuronal differentiation, possibly due to MXene's influence on intercellular adhesion. These findings highlight the potential of MXene particles in promoting rapid aggregation and differentiation of hADSC and hNSC spheroids, offering promise for applications in tissue engineering, specifically in bone and nerve regeneration.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 3","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400100","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
MXenes represent a new class of 2D materials and exhibit unique properties that render them promising candidates for biomedical applications. MXenes can interact with cell membranes and modulate cell junction interactions, thereby influencing stem cell fate. While previous studies have demonstrated their potential to induce cell differentiation, research on their effects on stem cell spheroid growth and differentiation capacity is limited. This study investigates the ability of MXenes to induce cell differentiation using spheroids, which mimic the in vivo 3D microenvironment and hold significance for bone and nerve regeneration. MXene-induced spheroids of human adipose-derived mesenchymal stem cells (hADSCs) and human neural stem cells (hNSCs) rapidly aggregate, indicating MXene's role in spheroid formation. The differentiation of these spheroids confirms MXene's ability to induce specific cell types: hADSC spheroids show enhanced osteogenic differentiation at a 5 μg mL−1 concentration, while hNSC spheroids require higher concentrations (20 μg mL−1) for neuronal differentiation, possibly due to MXene's influence on intercellular adhesion. These findings highlight the potential of MXene particles in promoting rapid aggregation and differentiation of hADSC and hNSC spheroids, offering promise for applications in tissue engineering, specifically in bone and nerve regeneration.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.