{"title":"Human Skin Microbiota-Derived Extracellular Vesicles and Their Cosmeceutical Possibilities—A Mini Review","authors":"Thangavelu Soundara Rajan, Ramasamy Saiganesh, Madasamy Sivagnanavelmurugan, Francesca Diomede","doi":"10.1111/exd.70073","DOIUrl":null,"url":null,"abstract":"<p>The human skin hosts a complex ecosystem of microorganisms, collectively termed the skin microbiota. This intricate skin microbial community plays a pivotal role in human health and disease. Microbes interact with the host skin cells and immune cells through microbial products such as metabolites and secreted proteins. Research in recent years has received significant attention towards extracellular vesicles (EVs)—mediated microbe–host communication. In this concise review, we discuss the role of skin microbiota EVs in the regulation and maintenance of functional dermal tissue. The human topical microbiota is predominantly composed of bacteria, with Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes being the predominant phyla. Fungi, particularly Malassezia species, also constitute a significant component of this dermal microbial ecosystem. Nevertheless, research on EVs has primarily focused on a limited number of bacterial and fungal species pertaining to skin, including <i>Staphylococcus aureus</i>, <i>Staphylococcus epidermidis</i>, <i>Propionibacterium acnes</i>, <i>Lactobacillus plantarum</i> and <i>Malassezia sympodialis</i>. Particularly, EVs derived from <i>Staphylococcus epidermidis</i> and <i>Lactobacillus plantarum</i> show a promising outcome towards the management of skin inflammation and skin ageing. Given the demonstrated ability of EVs to penetrate the skin cells and deliver beneficial compounds, their application in cosmetic and cosmeceutical products remains in its early stages. Accordingly, we also address the need for extensive research, challenges and opportunities to fully harness their potential for skincare regimens.</p>","PeriodicalId":12243,"journal":{"name":"Experimental Dermatology","volume":"34 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exd.70073","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Dermatology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exd.70073","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The human skin hosts a complex ecosystem of microorganisms, collectively termed the skin microbiota. This intricate skin microbial community plays a pivotal role in human health and disease. Microbes interact with the host skin cells and immune cells through microbial products such as metabolites and secreted proteins. Research in recent years has received significant attention towards extracellular vesicles (EVs)—mediated microbe–host communication. In this concise review, we discuss the role of skin microbiota EVs in the regulation and maintenance of functional dermal tissue. The human topical microbiota is predominantly composed of bacteria, with Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes being the predominant phyla. Fungi, particularly Malassezia species, also constitute a significant component of this dermal microbial ecosystem. Nevertheless, research on EVs has primarily focused on a limited number of bacterial and fungal species pertaining to skin, including Staphylococcus aureus, Staphylococcus epidermidis, Propionibacterium acnes, Lactobacillus plantarum and Malassezia sympodialis. Particularly, EVs derived from Staphylococcus epidermidis and Lactobacillus plantarum show a promising outcome towards the management of skin inflammation and skin ageing. Given the demonstrated ability of EVs to penetrate the skin cells and deliver beneficial compounds, their application in cosmetic and cosmeceutical products remains in its early stages. Accordingly, we also address the need for extensive research, challenges and opportunities to fully harness their potential for skincare regimens.
期刊介绍:
Experimental Dermatology provides a vehicle for the rapid publication of innovative and definitive reports, letters to the editor and review articles covering all aspects of experimental dermatology. Preference is given to papers of immediate importance to other investigators, either by virtue of their new methodology, experimental data or new ideas. The essential criteria for publication are clarity, experimental soundness and novelty. Letters to the editor related to published reports may also be accepted, provided that they are short and scientifically relevant to the reports mentioned, in order to provide a continuing forum for discussion. Review articles represent a state-of-the-art overview and are invited by the editors.