On volume and surface area of parallel sets. II. Surface measures and (non)differentiability of the volume

IF 0.8 3区 数学 Q2 MATHEMATICS
Jan Rataj, Steffen Winter
{"title":"On volume and surface area of parallel sets. II. Surface measures and (non)differentiability of the volume","authors":"Jan Rataj,&nbsp;Steffen Winter","doi":"10.1112/blms.70006","DOIUrl":null,"url":null,"abstract":"<p>We prove that at differentiability points <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mn>0</mn>\n </msub>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$r_0&gt;0$</annotation>\n </semantics></math> of the volume function of a compact set <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$A\\subset \\mathbb {R}^d$</annotation>\n </semantics></math> (associating to <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math> the volume of the <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-parallel set of <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>), the surface area measures of <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-parallel sets of <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> converge weakly to the surface area measure of the <span></span><math>\n <semantics>\n <msub>\n <mi>r</mi>\n <mn>0</mn>\n </msub>\n <annotation>$r_0$</annotation>\n </semantics></math>-parallel set as <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>→</mo>\n <msub>\n <mi>r</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation>$r\\rightarrow r_0$</annotation>\n </semantics></math>. We further study the question which sets of parallel radii can occur as sets of nondifferentiability points of the volume function of some compact set. We provide a full characterization for dimensions <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$d=1$</annotation>\n </semantics></math> and 2.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 3","pages":"895-912"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70006","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that at differentiability points r 0 > 0 $r_0>0$ of the volume function of a compact set A R d $A\subset \mathbb {R}^d$ (associating to r $r$ the volume of the r $r$ -parallel set of A $A$ ), the surface area measures of r $r$ -parallel sets of A $A$ converge weakly to the surface area measure of the r 0 $r_0$ -parallel set as r r 0 $r\rightarrow r_0$ . We further study the question which sets of parallel radii can occur as sets of nondifferentiability points of the volume function of some compact set. We provide a full characterization for dimensions d = 1 $d=1$ and 2.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信