Conformal classes of Lorentzian surfaces with Killing fields

IF 0.8 3区 数学 Q2 MATHEMATICS
Pierre Mounoud
{"title":"Conformal classes of Lorentzian surfaces with Killing fields","authors":"Pierre Mounoud","doi":"10.1112/blms.70010","DOIUrl":null,"url":null,"abstract":"<p>We study the conformal classes of two-dimensional Lorentzian tori with (nonzero) Killing fields. We define a map that associate to such a class a vector field on the circle (up to a scalar factor). This map is not injective but has finite-dimensional fiber. It allows us to characterize the conformal classes of tori with Killing field satisfying a condition related to the existence of conjugate points given by Mehidi.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 3","pages":"964-977"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70010","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the conformal classes of two-dimensional Lorentzian tori with (nonzero) Killing fields. We define a map that associate to such a class a vector field on the circle (up to a scalar factor). This map is not injective but has finite-dimensional fiber. It allows us to characterize the conformal classes of tori with Killing field satisfying a condition related to the existence of conjugate points given by Mehidi.

具有杀戮场的洛伦兹曲面的共形类
研究了具有(非零)杀戮场的二维洛伦兹环面共形类。我们定义了一个映射,将圆上的向量场(直到一个标量因子)关联到这样一个类。这个图不是内射的,而是有有限维的纤维。它允许我们刻画具有杀戮域的环面共形类,满足Mehidi给出的共轭点存在的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信