Design and synthesis of novel substituted s-triazines tethered benzenesulfonamides as potential antimicrobial candidates: Antibiofilm and bacterial protein permeability assessments

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL
Ahmed A. Al-Karmalawy, Haytham O. Tawfik, Gharieb S. El-Sayyad, Ayman Abo Elmaaty, Sobhy S. Abdel-Fatah, Akhtar Atiya, Abdullah Yahya Abdullah Alzahrani, Arwa Omar Al Khatib, Mervat H. El-Hamamsy, Heba A. Elsebaie
{"title":"Design and synthesis of novel substituted s-triazines tethered benzenesulfonamides as potential antimicrobial candidates: Antibiofilm and bacterial protein permeability assessments","authors":"Ahmed A. Al-Karmalawy,&nbsp;Haytham O. Tawfik,&nbsp;Gharieb S. El-Sayyad,&nbsp;Ayman Abo Elmaaty,&nbsp;Sobhy S. Abdel-Fatah,&nbsp;Akhtar Atiya,&nbsp;Abdullah Yahya Abdullah Alzahrani,&nbsp;Arwa Omar Al Khatib,&nbsp;Mervat H. El-Hamamsy,&nbsp;Heba A. Elsebaie","doi":"10.1002/ardp.202400931","DOIUrl":null,"url":null,"abstract":"<p>New <i>s</i>-triazine hydrazone hybrids (<b>4a</b>–<b>4r</b>) were designed and synthesized as promising microbial DNA gyrase inhibitors. This was done by taking the lead DNA gyrase inhibitor (AstraZeneca arylaminotriazine) as a reference. The novel samples were subsequently tested as antimicrobial agents against certain pathogenic bacteria and unicellular fungi. The antibiofilm potential and the membrane leakage test were used to determine the mechanism of the antimicrobial response. The minimum inhibitory concentration (MIC) values of <b>4g</b>, <b>4i</b>, and <b>4r</b> samples were between 62.5 and 250.0 µg/mL. The MIC values for the <b>4g</b> candidate against <i>Staphylococcus aureus, Candida albicans, Enterobacter agglomerans</i>, and <i>Klebsiella pneumonia</i> are 62.5, 125.0, and 250.0 µg/mL, respectively. Conversely, the MIC of compound <b>4i</b> was 62.5 µg/mL for <i>C. albicans and E. agglomerans</i> and 125.0 µg/mL for <i>S. aureus and K. pneumonia</i>. Besides, a molecular docking study was performed to validate both the binding affinity and binding mode of the newly designed analogs of <i>s</i>-triazine candidates toward bacterial DNA gyrase receptors. The synthesized nanocomposites had promising antimicrobial potentials, which are encouraging their use in biomedical applications. Consequently, the afforded compounds can be employed as promising antimicrobial lead compounds for future optimization.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"358 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400931","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

New s-triazine hydrazone hybrids (4a4r) were designed and synthesized as promising microbial DNA gyrase inhibitors. This was done by taking the lead DNA gyrase inhibitor (AstraZeneca arylaminotriazine) as a reference. The novel samples were subsequently tested as antimicrobial agents against certain pathogenic bacteria and unicellular fungi. The antibiofilm potential and the membrane leakage test were used to determine the mechanism of the antimicrobial response. The minimum inhibitory concentration (MIC) values of 4g, 4i, and 4r samples were between 62.5 and 250.0 µg/mL. The MIC values for the 4g candidate against Staphylococcus aureus, Candida albicans, Enterobacter agglomerans, and Klebsiella pneumonia are 62.5, 125.0, and 250.0 µg/mL, respectively. Conversely, the MIC of compound 4i was 62.5 µg/mL for C. albicans and E. agglomerans and 125.0 µg/mL for S. aureus and K. pneumonia. Besides, a molecular docking study was performed to validate both the binding affinity and binding mode of the newly designed analogs of s-triazine candidates toward bacterial DNA gyrase receptors. The synthesized nanocomposites had promising antimicrobial potentials, which are encouraging their use in biomedical applications. Consequently, the afforded compounds can be employed as promising antimicrobial lead compounds for future optimization.

新型取代s-三嗪系联苯磺酰胺作为潜在抗菌剂的设计和合成:抗生素膜和细菌蛋白渗透性评估
设计并合成了新的s-三嗪腙杂合体(4a-4r)作为微生物DNA旋切酶抑制剂。这是通过以DNA旋切酶抑制剂(阿斯利康芳胺三嗪)为参照来完成的。这些新样品随后被测试为抗某些致病菌和单细胞真菌的抗菌剂。采用抗菌膜电位测定和膜渗漏试验确定抗菌反应的机制。4g、4i和4r样品的最低抑菌浓度(MIC)值在62.5 ~ 250.0µg/mL之间。4g候选物对金黄色葡萄球菌、白色念珠菌、聚集肠杆菌和肺炎克雷伯菌的MIC值分别为62.5、125.0和250.0µg/mL。相反,化合物4i对白色念珠菌和凝集念珠菌的MIC为62.5µg/mL,对金黄色葡萄球菌和肺炎克雷伯菌的MIC为125.0µg/mL。此外,我们还进行了分子对接研究,验证了新设计的s-三嗪候选物类似物对细菌DNA旋切酶受体的结合亲和力和结合方式。所合成的纳米复合材料具有良好的抗菌潜力,在生物医学领域具有广泛的应用前景。因此,所提供的化合物可以作为未来优化的有前途的抗菌先导化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Pharmazie
Archiv der Pharmazie 医学-化学综合
CiteScore
7.90
自引率
5.90%
发文量
176
审稿时长
3.0 months
期刊介绍: Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信