Abiotic Ribonucleoside Formation in Aqueous Microdroplets: Mechanistic Exploration, Acidity, and Electric Field Effects

Maciej Piejko, Javier E. Alfonso-Ramos, Joseph Moran, Thijs Stuyver
{"title":"Abiotic Ribonucleoside Formation in Aqueous Microdroplets: Mechanistic Exploration, Acidity, and Electric Field Effects","authors":"Maciej Piejko,&nbsp;Javier E. Alfonso-Ramos,&nbsp;Joseph Moran,&nbsp;Thijs Stuyver","doi":"10.1002/ceur.202400093","DOIUrl":null,"url":null,"abstract":"<p>Aqueous microdroplets have been reported to dramatically increase the rate of chemical reactions. Proposed mechanisms for this acceleration include confinement effects upon droplet evaporation, and Brønsted acid or electric field catalysis at the air-water interface. However, computational investigations indicate that the operation of these mechanisms is reaction-dependent, with conclusive evidence for a role for electric field catalysis still lacking. Here, we present a computational investigation of the reported abiotic phosphorylation of ribose and the subsequent formation of ribonucleosides, focusing on acidity and oriented external electric field (OEEF) effects. The most plausible reaction mechanism identified involves the protonation of ribose, followed by carbocation formation and an S<sub><i>N</i></sub>2 substitution step. Without an OEEF, all considered pathways are thermally inaccessible. However, in the presence of a significant OEEF, the S<sub><i>N</i></sub>2-based pathway, leading to the <i>β</i>-ribonucleoside isomer, becomes highly stabilized, reducing the energetic span to a thermally accessible 12–13 kcal/mol. Surprisingly, the OEEF-mediated reaction closely mirrors the enzymatic mechanism of phosphorolysis via S<sub><i>N</i></sub>2 substitution, including a pronounced anomeric selectivity. Our results support the hypothesis that some reactions in aqueous microdroplets are accelerated by electric fields and provide further evidence for the importance of electrostatic catalysis in biological systems, particularly for phosphorylase enzymes.</p>","PeriodicalId":100234,"journal":{"name":"ChemistryEurope","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ceur.202400093","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryEurope","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceur.202400093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous microdroplets have been reported to dramatically increase the rate of chemical reactions. Proposed mechanisms for this acceleration include confinement effects upon droplet evaporation, and Brønsted acid or electric field catalysis at the air-water interface. However, computational investigations indicate that the operation of these mechanisms is reaction-dependent, with conclusive evidence for a role for electric field catalysis still lacking. Here, we present a computational investigation of the reported abiotic phosphorylation of ribose and the subsequent formation of ribonucleosides, focusing on acidity and oriented external electric field (OEEF) effects. The most plausible reaction mechanism identified involves the protonation of ribose, followed by carbocation formation and an SN2 substitution step. Without an OEEF, all considered pathways are thermally inaccessible. However, in the presence of a significant OEEF, the SN2-based pathway, leading to the β-ribonucleoside isomer, becomes highly stabilized, reducing the energetic span to a thermally accessible 12–13 kcal/mol. Surprisingly, the OEEF-mediated reaction closely mirrors the enzymatic mechanism of phosphorolysis via SN2 substitution, including a pronounced anomeric selectivity. Our results support the hypothesis that some reactions in aqueous microdroplets are accelerated by electric fields and provide further evidence for the importance of electrostatic catalysis in biological systems, particularly for phosphorylase enzymes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信