Analysis of Contact and Bending Fatigue for Double-Helical Planetary Gear Train Based on Efficient Critical Plane Methods

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Zhuang Chen, Qingbing Dong, Xiujiang Shi, Weimin Huang, Bo Zhao
{"title":"Analysis of Contact and Bending Fatigue for Double-Helical Planetary Gear Train Based on Efficient Critical Plane Methods","authors":"Zhuang Chen,&nbsp;Qingbing Dong,&nbsp;Xiujiang Shi,&nbsp;Weimin Huang,&nbsp;Bo Zhao","doi":"10.1111/ffe.14555","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Contact and bending fatigue are the main failure modes in gears. In this study, we propose a finite element model to investigate the fatigue behavior of a double-helical planetary gearbox based on the critical plane methods with a search algorithm to improve calculation efficiency. The finite element mesh is generated along the direction of the contact line to accurately capture contact stress. The time-varying coefficient of friction between contact surfaces and the residual stress in the hardened layer are considered in the developed model. The effectiveness of the model is demonstrated by comparing the predicted fatigue life with measured data from experiments for a spur gear planetary train. It is concluded that the ability of the planet gear to resist contact fatigue dominates the service duration with fatigue cracks initiating nearly parallel to the surface. The surface hardness gradient is recommended to ensure reliable operation throughout its designed life.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 4","pages":"1429-1446"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14555","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Contact and bending fatigue are the main failure modes in gears. In this study, we propose a finite element model to investigate the fatigue behavior of a double-helical planetary gearbox based on the critical plane methods with a search algorithm to improve calculation efficiency. The finite element mesh is generated along the direction of the contact line to accurately capture contact stress. The time-varying coefficient of friction between contact surfaces and the residual stress in the hardened layer are considered in the developed model. The effectiveness of the model is demonstrated by comparing the predicted fatigue life with measured data from experiments for a spur gear planetary train. It is concluded that the ability of the planet gear to resist contact fatigue dominates the service duration with fatigue cracks initiating nearly parallel to the surface. The surface hardness gradient is recommended to ensure reliable operation throughout its designed life.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信