Surface structure analysis using visual high-resolution in situ process monitoring in laser powder bed fusion

IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Jonathan Schmidt, Benjamin Merz, Konstantin Poka, Gunther Mohr, Kai Hilgenberg
{"title":"Surface structure analysis using visual high-resolution in situ process monitoring in laser powder bed fusion","authors":"Jonathan Schmidt,&nbsp;Benjamin Merz,&nbsp;Konstantin Poka,&nbsp;Gunther Mohr,&nbsp;Kai Hilgenberg","doi":"10.1007/s40194-025-01955-1","DOIUrl":null,"url":null,"abstract":"<div><p>Parameter studies are a common step in selecting process parameters for laser powder bed fusion of metals (PBF-LB/M). Density cubes are commonly used for this purpose. Density cubes manufactured with varied process parameters can exhibit distinguishable surface structures visible to the human eye. The layer-wise process enables such surface structures to be detected during manufacturing. However, industrial visual in situ monitoring systems for PBF-LB/M currently have limited resolution and are incapable of reliably capturing small differences in the surface structures. In this work, a 65 MPixel high-resolution monochrome camera was integrated into an industrial PBF-LB/M machine together with a high-intensity LED (light-emitting diode) bar. Post-exposure images were taken to analyse differences in light reflection of fused areas. It is revealed that the grey-level co-occurrence matrix can be used to quantify the visual surface structure of nickel-based superalloy Inconel®939 density cubes per layer. The properties of the grey-level co-occurrence matrix correlate to the energy input and the resulting porosity of density cubes. Low-energy samples containing lack of fusion flaws show an increased contrast in the grey-level co-occurrence matrix compared to specimens with optimal energy input. The potential of high-resolution images for quality assurance via in situ process monitoring in PBF-LB/M is further discussed.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 4","pages":"1087 - 1101"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-025-01955-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-025-01955-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Parameter studies are a common step in selecting process parameters for laser powder bed fusion of metals (PBF-LB/M). Density cubes are commonly used for this purpose. Density cubes manufactured with varied process parameters can exhibit distinguishable surface structures visible to the human eye. The layer-wise process enables such surface structures to be detected during manufacturing. However, industrial visual in situ monitoring systems for PBF-LB/M currently have limited resolution and are incapable of reliably capturing small differences in the surface structures. In this work, a 65 MPixel high-resolution monochrome camera was integrated into an industrial PBF-LB/M machine together with a high-intensity LED (light-emitting diode) bar. Post-exposure images were taken to analyse differences in light reflection of fused areas. It is revealed that the grey-level co-occurrence matrix can be used to quantify the visual surface structure of nickel-based superalloy Inconel®939 density cubes per layer. The properties of the grey-level co-occurrence matrix correlate to the energy input and the resulting porosity of density cubes. Low-energy samples containing lack of fusion flaws show an increased contrast in the grey-level co-occurrence matrix compared to specimens with optimal energy input. The potential of high-resolution images for quality assurance via in situ process monitoring in PBF-LB/M is further discussed.

利用可视化高分辨率激光粉末床熔融原位过程监控进行表面结构分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Welding in the World
Welding in the World METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
4.20
自引率
14.30%
发文量
181
审稿时长
6-12 weeks
期刊介绍: The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信