Stephan A. Egerland, Benjamin Schranz, Harald Langeder
{"title":"Determination of EMF exposure in arc welding by introducing improved numerical anatomic body simulation","authors":"Stephan A. Egerland, Benjamin Schranz, Harald Langeder","doi":"10.1007/s40194-024-01871-w","DOIUrl":null,"url":null,"abstract":"<div><p>Electric and magnetic field (EMF) phenomena arise where applying manual arc welding equipment. Consequently, using such systems may cause adverse effects to welding personnel. Models available quantitatively to assess EMF impacts in welding consistently show underestimation of exposure, mainly due to simplified boundary conditions implemented to facilitate modelling application. For arc welding, this paper introduces a novel approach, namely the implementation of Induction Factors based on anatomical body models in realistic welding postures and welding current parameters to improve the EMF assessment quality. Moreover, it is shown in how far especially advanced MIG/MAG and TIG welding variants, for example also involving additional hardware, may cause exposure values close to the limits defined in currently existing standards. Results, both found in practical process application and numerical simulation, are presented and discussed. Employing the developed calculation approach is capable of compensating for inaccuracies yet identified with models still recommended by regulatory or professional bodies. Users are provided with comprehensive information to help practically evaluate EMF exposure.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 4","pages":"1157 - 1169"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01871-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01871-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Electric and magnetic field (EMF) phenomena arise where applying manual arc welding equipment. Consequently, using such systems may cause adverse effects to welding personnel. Models available quantitatively to assess EMF impacts in welding consistently show underestimation of exposure, mainly due to simplified boundary conditions implemented to facilitate modelling application. For arc welding, this paper introduces a novel approach, namely the implementation of Induction Factors based on anatomical body models in realistic welding postures and welding current parameters to improve the EMF assessment quality. Moreover, it is shown in how far especially advanced MIG/MAG and TIG welding variants, for example also involving additional hardware, may cause exposure values close to the limits defined in currently existing standards. Results, both found in practical process application and numerical simulation, are presented and discussed. Employing the developed calculation approach is capable of compensating for inaccuracies yet identified with models still recommended by regulatory or professional bodies. Users are provided with comprehensive information to help practically evaluate EMF exposure.
期刊介绍:
The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.