Mechanisms and Mitigation Strategies of Gas Generation in Sodium-Ion Batteries

IF 26.6 1区 材料科学 Q1 Engineering
Xingyan Li, Xi Chen, Meng Li, Haoran Wei, Xuming Yang, Shenghua Ye, Liewu Li, Jing Chen, Xiangzhong Ren, Xiaoping Ouyang, Jianhong Liu, Xiangtong Meng, Jieshan Qiu, Biwei Xiao, Qianling Zhang, Jiangtao Hu
{"title":"Mechanisms and Mitigation Strategies of Gas Generation in Sodium-Ion Batteries","authors":"Xingyan Li,&nbsp;Xi Chen,&nbsp;Meng Li,&nbsp;Haoran Wei,&nbsp;Xuming Yang,&nbsp;Shenghua Ye,&nbsp;Liewu Li,&nbsp;Jing Chen,&nbsp;Xiangzhong Ren,&nbsp;Xiaoping Ouyang,&nbsp;Jianhong Liu,&nbsp;Xiangtong Meng,&nbsp;Jieshan Qiu,&nbsp;Biwei Xiao,&nbsp;Qianling Zhang,&nbsp;Jiangtao Hu","doi":"10.1007/s40820-025-01697-1","DOIUrl":null,"url":null,"abstract":"<div><p>The transition to renewable energy sources has elevated the importance of SIBs (SIBs) as cost-effective alternatives to lithium-ion batteries (LIBs) for large-scale energy storage. This review examines the mechanisms of gas generation in SIBs, identifying sources from cathode materials, anode materials, and electrolytes, which pose safety risks like swelling, leakage, and explosions. Gases such as CO<sub>2</sub>, H<sub>2</sub>, and O<sub>2</sub> primarily arise from the instability of cathode materials, side reactions between electrode and electrolyte, and electrolyte decomposition under high temperatures or voltages. Enhanced mitigation strategies, encompassing electrolyte design, buffer layer construction, and electrode material optimization, are deliberated upon. Accordingly, subsequent research endeavors should prioritize long-term high-precision gas detection to bolster the safety and performance of SIBs, thereby fortifying their commercial viability and furnishing dependable solutions for large-scale energy storage and electric vehicles.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01697-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01697-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The transition to renewable energy sources has elevated the importance of SIBs (SIBs) as cost-effective alternatives to lithium-ion batteries (LIBs) for large-scale energy storage. This review examines the mechanisms of gas generation in SIBs, identifying sources from cathode materials, anode materials, and electrolytes, which pose safety risks like swelling, leakage, and explosions. Gases such as CO2, H2, and O2 primarily arise from the instability of cathode materials, side reactions between electrode and electrolyte, and electrolyte decomposition under high temperatures or voltages. Enhanced mitigation strategies, encompassing electrolyte design, buffer layer construction, and electrode material optimization, are deliberated upon. Accordingly, subsequent research endeavors should prioritize long-term high-precision gas detection to bolster the safety and performance of SIBs, thereby fortifying their commercial viability and furnishing dependable solutions for large-scale energy storage and electric vehicles.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信