Effect of heat treatment parameters on SLM-fabricated GNPs/IN718 composites: microstructural evolution and mechanical properties

IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Yang Chu, Haichuan Shi, Peilei Zhang, Boyu Wang, Zhishui Yu, Hua Yan, Qinghua Lu, Kaichang Yu, Zhaolong Li, Yu Lei
{"title":"Effect of heat treatment parameters on SLM-fabricated GNPs/IN718 composites: microstructural evolution and mechanical properties","authors":"Yang Chu,&nbsp;Haichuan Shi,&nbsp;Peilei Zhang,&nbsp;Boyu Wang,&nbsp;Zhishui Yu,&nbsp;Hua Yan,&nbsp;Qinghua Lu,&nbsp;Kaichang Yu,&nbsp;Zhaolong Li,&nbsp;Yu Lei","doi":"10.1007/s40194-025-01958-y","DOIUrl":null,"url":null,"abstract":"<div><p>This paper systematically investigated the effects of solution and solution aging treatments on the microstructure evolution and mechanical properties of selective laser melting (SLM) graphene nanoplatelets (GNPs)–reinforced Inconel 718 (IN718) composites. The selective orientation of the grains in the heat-treated SLMed GNPs/IN718 composites gradually disappeared, and the changes in the morphology and precipitation phases of the grains were systematically investigated. Results show that the solution treatment eliminated the dendritic and cellular crystal structure within the composite, while also producing a large number of white carbide particles. The mechanical properties of the composites decreased with increasing temperature after the solution treatment. Solution aging treatments eliminate elemental segregation, precipitate a large number of γ″-strengthened phases, and improve the materials’ tensile strength and wear resistance. Notable changes were observed compared with the untreated specimens. The hardness and tensile strength exhibited respective increases of 26.4% and 1.5%. Conversely, the elongation was reduced by 14%. Moreover, the average coefficient of friction and weight loss dropped by 6.89% and 18.78%, respectively. In the friction test, GNPs act as a lubricating phase, resulting in a significant increase in the friction wear performance of the composite. The heat treatment process releases residual stresses within the composite and improves the internal anisotropy of the material. This work is expected to provide a potential pathway to obtaining attractive mechanical properties for nickel-based superalloy components.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 4","pages":"1103 - 1121"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-025-01958-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-025-01958-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This paper systematically investigated the effects of solution and solution aging treatments on the microstructure evolution and mechanical properties of selective laser melting (SLM) graphene nanoplatelets (GNPs)–reinforced Inconel 718 (IN718) composites. The selective orientation of the grains in the heat-treated SLMed GNPs/IN718 composites gradually disappeared, and the changes in the morphology and precipitation phases of the grains were systematically investigated. Results show that the solution treatment eliminated the dendritic and cellular crystal structure within the composite, while also producing a large number of white carbide particles. The mechanical properties of the composites decreased with increasing temperature after the solution treatment. Solution aging treatments eliminate elemental segregation, precipitate a large number of γ″-strengthened phases, and improve the materials’ tensile strength and wear resistance. Notable changes were observed compared with the untreated specimens. The hardness and tensile strength exhibited respective increases of 26.4% and 1.5%. Conversely, the elongation was reduced by 14%. Moreover, the average coefficient of friction and weight loss dropped by 6.89% and 18.78%, respectively. In the friction test, GNPs act as a lubricating phase, resulting in a significant increase in the friction wear performance of the composite. The heat treatment process releases residual stresses within the composite and improves the internal anisotropy of the material. This work is expected to provide a potential pathway to obtaining attractive mechanical properties for nickel-based superalloy components.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Welding in the World
Welding in the World METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
4.20
自引率
14.30%
发文量
181
审稿时长
6-12 weeks
期刊介绍: The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信