A. El Moussawi, S. Karaminejad, J. Menser, W. G. Bessler, T. Dreier, T. Endres, C. Schulz
{"title":"LIFSim, a modular laser-induced fluorescence code for concentration and temperature analysis of diatomic molecules","authors":"A. El Moussawi, S. Karaminejad, J. Menser, W. G. Bessler, T. Dreier, T. Endres, C. Schulz","doi":"10.1007/s00340-025-08388-0","DOIUrl":null,"url":null,"abstract":"<div><p>Laser-induced fluorescence (LIF) is a non-invasive optical diagnostics technique frequently used in reactive media to measure physical properties such as gas-phase species concentrations and temperature. It provides important information for understanding reaction and transport processes. For deriving detection schemes that provide selective and quantitative information, fluorescence spectra of the species of interest as well as potential interference sources must be simulated. LIFSim 4.0 is a modular software for simulating absorption, LIF excitation, and LIF emission spectra of NO, SiO, OH, and O<sub>2</sub> that also can be extended by the user to include other species. Line positions, line broadening, and collisional quenching are calculated based on spectroscopic data from literature. The code provides spectral analysis tools to interrogate and analyze sensitive spectral regions suitable for derivation of temperature from multi-line LIF measurements. The library includes fitting functions optimized for enhancing and accelerating the post-processing of stacked LIF images with varied excitation wavelength for temperature imaging and separation of the target LIF signal from broad-band or scattering background as well as tools for assessing the validity of results in non-ideal measurement situations.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"131 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00340-025-08388-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-025-08388-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Laser-induced fluorescence (LIF) is a non-invasive optical diagnostics technique frequently used in reactive media to measure physical properties such as gas-phase species concentrations and temperature. It provides important information for understanding reaction and transport processes. For deriving detection schemes that provide selective and quantitative information, fluorescence spectra of the species of interest as well as potential interference sources must be simulated. LIFSim 4.0 is a modular software for simulating absorption, LIF excitation, and LIF emission spectra of NO, SiO, OH, and O2 that also can be extended by the user to include other species. Line positions, line broadening, and collisional quenching are calculated based on spectroscopic data from literature. The code provides spectral analysis tools to interrogate and analyze sensitive spectral regions suitable for derivation of temperature from multi-line LIF measurements. The library includes fitting functions optimized for enhancing and accelerating the post-processing of stacked LIF images with varied excitation wavelength for temperature imaging and separation of the target LIF signal from broad-band or scattering background as well as tools for assessing the validity of results in non-ideal measurement situations.
期刊介绍:
Features publication of experimental and theoretical investigations in applied physics
Offers invited reviews in addition to regular papers
Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more
94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again
Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field.
In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.