Systemic immune inflammation mediates the association of serum omega-3 and omega-6 polyunsaturated fatty acids with biological aging: a national population-based study

IF 3.4 3区 医学 Q2 GERIATRICS & GERONTOLOGY
Fei Shan, Yu Xiong, Pearl Pai, Mingya Liu
{"title":"Systemic immune inflammation mediates the association of serum omega-3 and omega-6 polyunsaturated fatty acids with biological aging: a national population-based study","authors":"Fei Shan,&nbsp;Yu Xiong,&nbsp;Pearl Pai,&nbsp;Mingya Liu","doi":"10.1007/s40520-025-02964-2","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>This study aimed to explore the association between serum omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) and biological aging, along with the potential mediating role of systemic immune inflammation (SII).</p><h3>Methods</h3><p>Data from the National Health and Nutrition Examination Survey (NHANES) 2011–2014 were used for analyses. Accelerated aging in participants was assessed by calculating the difference between phenotypic age (PhenoAge) and chronological age. Weighted multivariate linear regression models and subgroup analysis were used to investigate the correlation between serum n-3 and n-6 PUFAs and accelerated aging, and restricted cubic spline (RCS) model was applied to explore potential nonlinear relationships. We further conducted mediation analyses to assess the role of SII in these relationships. Additionally, weighted quantile sum (WQS) regression and quantile g-computation (QGC) models were conducted to investigate the mixed effects of serum PUFAs and identify the key contributor.</p><h3>Results</h3><p>A total of 3376 participants were enrolled in this study. In multivariate linear regression models, eight of the twelve individual serum PUFAs showed a significantly negative association with PhenoAge acceleration, Specifically, per-unit increases in linoleic acid (LA), gamma-linolenic acid (GLA), arachidonic acid (AA), alpha-linolenic acid (ALA), stearidonic acid (SDA), eicosapentaenoic acid (EPA), docosapentaenoic acid (n-3 DPA), and docosahexaenoic acid (DHA) were all associated with reduced PhenoAge acceleration (<i>P</i> &lt; 0.05, respectively). Subgroup analysis demonstrated robust consistence results when stratified by age, sex, and race/ethnicity. L-shaped nonlinear relationships were observed between PhenoAge acceleration with total n-6 PUFAs, LA and ALA (all <i>P</i> for nonlinear &lt; 0.05). Mediation analyses indicated that SII mediated the relationship between serum PUFAs and reduced PhenoAge acceleration. Mixed-effects analysis using WQS and QGC models revealed that the combined effect of serum PUFAs on reducing PhenoAge acceleration, with DHA showing the strongest significant contribution.</p><h3>Conclusions</h3><p>This study demonstrated that higher levels of certain PUFAs were associated with a reduction in PhenoAge acceleration either individually or in combination, with DHA having the most prominent effect in mixed effects. The SII mediated these relationships, suggesting that PUFAs may slow biological aging by reducing inflammation. These findings highlighted the potential role of PUFAs in mitigating accelerated aging and their implications for aging-related health interventions.</p></div>","PeriodicalId":7720,"journal":{"name":"Aging Clinical and Experimental Research","volume":"37 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40520-025-02964-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Clinical and Experimental Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s40520-025-02964-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

This study aimed to explore the association between serum omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) and biological aging, along with the potential mediating role of systemic immune inflammation (SII).

Methods

Data from the National Health and Nutrition Examination Survey (NHANES) 2011–2014 were used for analyses. Accelerated aging in participants was assessed by calculating the difference between phenotypic age (PhenoAge) and chronological age. Weighted multivariate linear regression models and subgroup analysis were used to investigate the correlation between serum n-3 and n-6 PUFAs and accelerated aging, and restricted cubic spline (RCS) model was applied to explore potential nonlinear relationships. We further conducted mediation analyses to assess the role of SII in these relationships. Additionally, weighted quantile sum (WQS) regression and quantile g-computation (QGC) models were conducted to investigate the mixed effects of serum PUFAs and identify the key contributor.

Results

A total of 3376 participants were enrolled in this study. In multivariate linear regression models, eight of the twelve individual serum PUFAs showed a significantly negative association with PhenoAge acceleration, Specifically, per-unit increases in linoleic acid (LA), gamma-linolenic acid (GLA), arachidonic acid (AA), alpha-linolenic acid (ALA), stearidonic acid (SDA), eicosapentaenoic acid (EPA), docosapentaenoic acid (n-3 DPA), and docosahexaenoic acid (DHA) were all associated with reduced PhenoAge acceleration (P < 0.05, respectively). Subgroup analysis demonstrated robust consistence results when stratified by age, sex, and race/ethnicity. L-shaped nonlinear relationships were observed between PhenoAge acceleration with total n-6 PUFAs, LA and ALA (all P for nonlinear < 0.05). Mediation analyses indicated that SII mediated the relationship between serum PUFAs and reduced PhenoAge acceleration. Mixed-effects analysis using WQS and QGC models revealed that the combined effect of serum PUFAs on reducing PhenoAge acceleration, with DHA showing the strongest significant contribution.

Conclusions

This study demonstrated that higher levels of certain PUFAs were associated with a reduction in PhenoAge acceleration either individually or in combination, with DHA having the most prominent effect in mixed effects. The SII mediated these relationships, suggesting that PUFAs may slow biological aging by reducing inflammation. These findings highlighted the potential role of PUFAs in mitigating accelerated aging and their implications for aging-related health interventions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
5.00%
发文量
283
审稿时长
1 months
期刊介绍: Aging clinical and experimental research offers a multidisciplinary forum on the progressing field of gerontology and geriatrics. The areas covered by the journal include: biogerontology, neurosciences, epidemiology, clinical gerontology and geriatric assessment, social, economical and behavioral gerontology. “Aging clinical and experimental research” appears bimonthly and publishes review articles, original papers and case reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信