Effect of process parameters and orientation on the tensile and low cycle fatigue properties of low-carbon steel builds manufactured by directed energy deposition-gas metal arc process

IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Atanu Das, Abhishek Kumar, Sumanta Bagui, Chandra Veer Singh, Nimai Haldar, Sanjay Vajpai, Vikas Chandra Srivastava, Gopi Kishor Mandal
{"title":"Effect of process parameters and orientation on the tensile and low cycle fatigue properties of low-carbon steel builds manufactured by directed energy deposition-gas metal arc process","authors":"Atanu Das,&nbsp;Abhishek Kumar,&nbsp;Sumanta Bagui,&nbsp;Chandra Veer Singh,&nbsp;Nimai Haldar,&nbsp;Sanjay Vajpai,&nbsp;Vikas Chandra Srivastava,&nbsp;Gopi Kishor Mandal","doi":"10.1007/s40194-024-01873-8","DOIUrl":null,"url":null,"abstract":"<div><p>Directed energy deposition-gas metal arc (DED-GMA) process has recently gained considerable attention due to its inherent capability to produce large metallic components, with moderate complexity, at substantially high deposition rate compared to other additive manufacturing techniques. The effect of wire feed rate, energy input per unit length and orientation on the tensile and low cycle fatigue behaviour of multi-layer builds of low-carbon steel ER70S-6 is systematically studied in the present work. In addition, a detailed microstructural characterization is also carried out for better understanding of the microstructural evolution during deposition and its influence on the mechanical behaviour of the build. In general, insignificant variation of the tensile properties of DED-GMA specimens at different orientations signifies an overall isotropic behaviour. The vertically oriented samples, printed at highest energy input, show superior fatigue life. The number of cycles to failure, for the vertically oriented samples, at highest wire feed rate of 10 m/min and deposition travel speed of 1 m/min, are found to be around 718, 450 and 366 at strain amplitudes of ± 0.6, ± 0.8 and ± 1.0%, respectively. It is envisaged that the control of energy input by adjusting wire feed rate and deposition travel speed is crucial to improve the tensile and fatigue properties of the build.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 4","pages":"957 - 971"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01873-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Directed energy deposition-gas metal arc (DED-GMA) process has recently gained considerable attention due to its inherent capability to produce large metallic components, with moderate complexity, at substantially high deposition rate compared to other additive manufacturing techniques. The effect of wire feed rate, energy input per unit length and orientation on the tensile and low cycle fatigue behaviour of multi-layer builds of low-carbon steel ER70S-6 is systematically studied in the present work. In addition, a detailed microstructural characterization is also carried out for better understanding of the microstructural evolution during deposition and its influence on the mechanical behaviour of the build. In general, insignificant variation of the tensile properties of DED-GMA specimens at different orientations signifies an overall isotropic behaviour. The vertically oriented samples, printed at highest energy input, show superior fatigue life. The number of cycles to failure, for the vertically oriented samples, at highest wire feed rate of 10 m/min and deposition travel speed of 1 m/min, are found to be around 718, 450 and 366 at strain amplitudes of ± 0.6, ± 0.8 and ± 1.0%, respectively. It is envisaged that the control of energy input by adjusting wire feed rate and deposition travel speed is crucial to improve the tensile and fatigue properties of the build.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Welding in the World
Welding in the World METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
4.20
自引率
14.30%
发文量
181
审稿时长
6-12 weeks
期刊介绍: The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信