Vesna Leontijevic, Danilo Cantero, Suset Barroso Solares, Antonio Heredia Bayona and María José Cocero Alonso
{"title":"Unlocking branched cutin via sudden supercritical water hydrolysis of tomato peel†","authors":"Vesna Leontijevic, Danilo Cantero, Suset Barroso Solares, Antonio Heredia Bayona and María José Cocero Alonso","doi":"10.1039/D5GC00375J","DOIUrl":null,"url":null,"abstract":"<p >This study presents a novel approach to unlock and enrich branched cutin from tomato peel waste using sudden supercritical water hydrolysis. Cutin, the structural polyester of the plant cuticle, offers exceptional properties for biomaterials developments, however, conventional extraction methods often degrade its intricate three-dimensional network, limiting its potential applications. Utilizing sudden supercritical water hydrolysis (SCWH) with a reaction time of approximately one second, non-cutin components are hydrolyzed while preserving and enriching the native cutin structure. Characterization of the cutin-rich solid revealed the absence of a detectable glass transition temperature or melting point, indicating the maintenance of its native polymeric architecture phenomena typically observed when cutin is isolated as a mixture of monomers. Furthermore, mechanical testing revealed high rigidity under more stringent conditions, with a measured Young's modulus of 0.7 GPa. This rapid and efficient process not only valorizes agricultural and industrial residues but also enables the development of sustainable, bio-based materials. The successful preservation and enrichment of native cutin open new avenues for its application in advanced biomaterials, offering a promising alternative to fossil fuel-derived polymers.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 11","pages":" 2950-2967"},"PeriodicalIF":9.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/gc/d5gc00375j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc00375j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel approach to unlock and enrich branched cutin from tomato peel waste using sudden supercritical water hydrolysis. Cutin, the structural polyester of the plant cuticle, offers exceptional properties for biomaterials developments, however, conventional extraction methods often degrade its intricate three-dimensional network, limiting its potential applications. Utilizing sudden supercritical water hydrolysis (SCWH) with a reaction time of approximately one second, non-cutin components are hydrolyzed while preserving and enriching the native cutin structure. Characterization of the cutin-rich solid revealed the absence of a detectable glass transition temperature or melting point, indicating the maintenance of its native polymeric architecture phenomena typically observed when cutin is isolated as a mixture of monomers. Furthermore, mechanical testing revealed high rigidity under more stringent conditions, with a measured Young's modulus of 0.7 GPa. This rapid and efficient process not only valorizes agricultural and industrial residues but also enables the development of sustainable, bio-based materials. The successful preservation and enrichment of native cutin open new avenues for its application in advanced biomaterials, offering a promising alternative to fossil fuel-derived polymers.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.