Recent advances in ex ante techno-environmental-economic assessment of thermochemical waste or biomass to energy technologies based on process simulation†
Jiehong Tang, Yuting Tang, Hongyu Liu, Xinfei Chen, Xikui Zhang, Yin Chen, Shuang Liang, Junxuan Huang, Wen Teng, Ziwei Sun and Xiaoqian Ma
{"title":"Recent advances in ex ante techno-environmental-economic assessment of thermochemical waste or biomass to energy technologies based on process simulation†","authors":"Jiehong Tang, Yuting Tang, Hongyu Liu, Xinfei Chen, Xikui Zhang, Yin Chen, Shuang Liang, Junxuan Huang, Wen Teng, Ziwei Sun and Xiaoqian Ma","doi":"10.1039/D4GC06016D","DOIUrl":null,"url":null,"abstract":"<p >Thermochemical waste or biomass to energy (W/BtE) technology is known for its high conversion efficiency, rapid reaction rate, and foreseeable scale-up potential. To elucidate the coexisting risks and opportunities of newly proposed or ready-to-be-retrofitted W/BtE systems, ex ante techno-environmental-economic (TEE) assessment can provide multidimensional quantified guidance, while process simulation is an effective tool to predict their performance based on the existing laboratory- or pilot-scale experiment results. This review aims to provide a comprehensive understanding of process simulation-based TEE assessment of W/BtE systems. It summarizes the establishment of applicable conditions for reactor-level modelling approaches. Next, the calculation methods and principles for TEE assessment are introduced. Furthermore, based on the review of studies published from 2020 to 2024, it fully investigates the advances in the optimization of thermochemical processes through process simulation and the performance improvement of W/BtE systems, including waste or biomass to power (W/BtP) and to fuel (W/BtF) systems. Eventually, it highlights that the enhancement of data source quality and in-depth consideration of realistic conditions are the key aspects to be improved in the future.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 11","pages":" 2846-2899"},"PeriodicalIF":9.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc06016d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermochemical waste or biomass to energy (W/BtE) technology is known for its high conversion efficiency, rapid reaction rate, and foreseeable scale-up potential. To elucidate the coexisting risks and opportunities of newly proposed or ready-to-be-retrofitted W/BtE systems, ex ante techno-environmental-economic (TEE) assessment can provide multidimensional quantified guidance, while process simulation is an effective tool to predict their performance based on the existing laboratory- or pilot-scale experiment results. This review aims to provide a comprehensive understanding of process simulation-based TEE assessment of W/BtE systems. It summarizes the establishment of applicable conditions for reactor-level modelling approaches. Next, the calculation methods and principles for TEE assessment are introduced. Furthermore, based on the review of studies published from 2020 to 2024, it fully investigates the advances in the optimization of thermochemical processes through process simulation and the performance improvement of W/BtE systems, including waste or biomass to power (W/BtP) and to fuel (W/BtF) systems. Eventually, it highlights that the enhancement of data source quality and in-depth consideration of realistic conditions are the key aspects to be improved in the future.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.