Bei Li, Shiyang Fei, Zhenlu Liu, Changshui Wang, Zhiqiang Sun, Chunmei Zhang, Haoqi Yang, Hongliang Zhao, Qian Zhang and Shuijian He
{"title":"Optimizing oxygen functional groups on porous carbon monoliths by green activation promotes seawater hydrogen evolution†","authors":"Bei Li, Shiyang Fei, Zhenlu Liu, Changshui Wang, Zhiqiang Sun, Chunmei Zhang, Haoqi Yang, Hongliang Zhao, Qian Zhang and Shuijian He","doi":"10.1039/D5GC00029G","DOIUrl":null,"url":null,"abstract":"<p >Oxygen-doped carbon materials are promising candidates for the electrocatalytic hydrogen evolution reaction (HER). However, optimizing and delineating the roles of specific oxygen-containing functional groups in modulating their catalytic activity remains challenging. Herein, a green and environmentally friendly method involving hydrogen peroxide (H<small><sub>2</sub></small>O<small><sub>2</sub></small>) hydrothermal activation of carbonized wood (CW) is employed to regulate and examine oxygen-containing functional groups. Experimental results show that oxygen-doped carbon with a higher proportion of C<img>O species exhibits enhanced electrocatalytic activity in KOH and alkaline seawater. Theoretical calculations further revealed that the C<img>O functional group regulated the electronic structure of defective carbon and improved the electrocatalytic activity of the HER by promoting the dissociation of water. This study presents a green method for modulating oxygen-containing functional groups and offers theoretical insights into their roles, paving the way for designing more efficient oxygen-doped, metal-free carbon-based electrocatalysts for HER.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 11","pages":" 3099-3107"},"PeriodicalIF":9.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc00029g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxygen-doped carbon materials are promising candidates for the electrocatalytic hydrogen evolution reaction (HER). However, optimizing and delineating the roles of specific oxygen-containing functional groups in modulating their catalytic activity remains challenging. Herein, a green and environmentally friendly method involving hydrogen peroxide (H2O2) hydrothermal activation of carbonized wood (CW) is employed to regulate and examine oxygen-containing functional groups. Experimental results show that oxygen-doped carbon with a higher proportion of CO species exhibits enhanced electrocatalytic activity in KOH and alkaline seawater. Theoretical calculations further revealed that the CO functional group regulated the electronic structure of defective carbon and improved the electrocatalytic activity of the HER by promoting the dissociation of water. This study presents a green method for modulating oxygen-containing functional groups and offers theoretical insights into their roles, paving the way for designing more efficient oxygen-doped, metal-free carbon-based electrocatalysts for HER.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.