Xiaolu Yin, Shuping Wang, Ronghao Liu, Xiaoxia Liu, Jun Li and Yanzhao Yang
{"title":"Efficient and sustainable recycling of waste gallium arsenide semiconductors based on triiodide ionic liquids†","authors":"Xiaolu Yin, Shuping Wang, Ronghao Liu, Xiaoxia Liu, Jun Li and Yanzhao Yang","doi":"10.1039/D5GC00067J","DOIUrl":null,"url":null,"abstract":"<p >Gallium arsenide (GaAs) semiconductors, holding immense value, can cause environmental pollution and resource waste if stacked up or landfilled at will. Nevertheless, current research on GaAs recycling faces challenges of elevated energy demands and environmental repercussions. Consequently, we developed an efficient and sustainable GaAs recycling technology with promising potential. By utilizing synthesized triiodide ionic liquids, we selectively leached As and Ga from discarded GaAs without relying on strong acids, alkalis, or hazardous cyanide, and there was no generation of harmful byproducts, thereby reducing environmental impact. This method achieves exceptional recovery efficiency (As: 94.1%, Ga: 97.1%), high purity (As: 99.9%, Ga: 99.7%), and remarkable reusability (over 6 cycles). Our findings revealed that the successful leaching of As and Ga was attributed to powerful redox and complexation mechanisms. In-depth exploration of leaching kinetics indicated that the reaction occurred at an intermediate layer and unreacted core, following a mixed control model. Notably, this method is ideal for real-world application given the low-energy (80 °C), low-viscosity (below 35 cP) and one-step leaching and recovery. Importantly, life cycle assessments indicate that this recycling method substantially mitigates various environmental pressures and an economic analysis showed that recovering 1.0 kg of waste GaAs could yield a significant profit of 3.36 × 10<small><sup>4</sup></small> USD. Overall, this innovative strategy represents a noteworthy advancement in green recycling technology.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 11","pages":" 3077-3090"},"PeriodicalIF":9.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc00067j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Gallium arsenide (GaAs) semiconductors, holding immense value, can cause environmental pollution and resource waste if stacked up or landfilled at will. Nevertheless, current research on GaAs recycling faces challenges of elevated energy demands and environmental repercussions. Consequently, we developed an efficient and sustainable GaAs recycling technology with promising potential. By utilizing synthesized triiodide ionic liquids, we selectively leached As and Ga from discarded GaAs without relying on strong acids, alkalis, or hazardous cyanide, and there was no generation of harmful byproducts, thereby reducing environmental impact. This method achieves exceptional recovery efficiency (As: 94.1%, Ga: 97.1%), high purity (As: 99.9%, Ga: 99.7%), and remarkable reusability (over 6 cycles). Our findings revealed that the successful leaching of As and Ga was attributed to powerful redox and complexation mechanisms. In-depth exploration of leaching kinetics indicated that the reaction occurred at an intermediate layer and unreacted core, following a mixed control model. Notably, this method is ideal for real-world application given the low-energy (80 °C), low-viscosity (below 35 cP) and one-step leaching and recovery. Importantly, life cycle assessments indicate that this recycling method substantially mitigates various environmental pressures and an economic analysis showed that recovering 1.0 kg of waste GaAs could yield a significant profit of 3.36 × 104 USD. Overall, this innovative strategy represents a noteworthy advancement in green recycling technology.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.