Keke Li, Mingli Jiao, Muen Yang, Yangyang Li, Keke Ma, Wei Pan, Kai Yang
{"title":"Structural Evolution of Phenolic Fibers during the Forming Process","authors":"Keke Li, Mingli Jiao, Muen Yang, Yangyang Li, Keke Ma, Wei Pan, Kai Yang","doi":"10.1134/S1560090424601201","DOIUrl":null,"url":null,"abstract":"<p>This article focused on preparing high-ortho phenolic resin using phenol and formaldehyde as precursors and using zinc acetate as catalysts. High ortho-phenolic fibers were produced through wet spinning, solution thermal curing (STC), microwave thermal curing (MTC), and heat treatment techniques. The structural and mechanical properties of the fibers were evaluated using gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), micro-infrared imaging (Micro-FTIR), nuclear magnetic resonance (NMR), thermogravimetric analysis (TG), mechanical testing and scanning electron microscopy (SEM). The high-ortho phenolic fibers experienced a reduction in hydroxymethyl groups and an augmentation in methylene groups upon microwave curing, which enhanced cross-linking. Through the escalation of solution cross-linking bath and heat treatment, the hydroxymethyl groups within the phenolic molecules underwent a reaction to form methylene groups. Methylene groups facilitated the increase of intramolecular crosslinking degree, thereby enhancing the stability of the fibers structure. As a result, the mechanical properties of the fibers were improved and reached an optimal level under microwave heat curing, with an elongation of 3.1% and a tensile strength of 107 MPa.</p>","PeriodicalId":739,"journal":{"name":"Polymer Science, Series B","volume":"66 4","pages":"504 - 513"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series B","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1560090424601201","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This article focused on preparing high-ortho phenolic resin using phenol and formaldehyde as precursors and using zinc acetate as catalysts. High ortho-phenolic fibers were produced through wet spinning, solution thermal curing (STC), microwave thermal curing (MTC), and heat treatment techniques. The structural and mechanical properties of the fibers were evaluated using gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), micro-infrared imaging (Micro-FTIR), nuclear magnetic resonance (NMR), thermogravimetric analysis (TG), mechanical testing and scanning electron microscopy (SEM). The high-ortho phenolic fibers experienced a reduction in hydroxymethyl groups and an augmentation in methylene groups upon microwave curing, which enhanced cross-linking. Through the escalation of solution cross-linking bath and heat treatment, the hydroxymethyl groups within the phenolic molecules underwent a reaction to form methylene groups. Methylene groups facilitated the increase of intramolecular crosslinking degree, thereby enhancing the stability of the fibers structure. As a result, the mechanical properties of the fibers were improved and reached an optimal level under microwave heat curing, with an elongation of 3.1% and a tensile strength of 107 MPa.
期刊介绍:
Polymer Science, Series B is a journal published in collaboration with the Russian Academy of Sciences. Series B experimental and theoretical papers and reviews dealing with the synthesis, kinetics, catalysis, and chemical transformations of macromolecules, supramolecular structures, and polymer matrix-based composites (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed