Qizhao He , Weiyang Qin , Mengjie Shang , Hongsong Wang , Jianan Pan
{"title":"Harnessing vibration energy by inverted fork harvester with electromagnetic and piezoelectric effects","authors":"Qizhao He , Weiyang Qin , Mengjie Shang , Hongsong Wang , Jianan Pan","doi":"10.1016/j.ymssp.2025.112549","DOIUrl":null,"url":null,"abstract":"<div><div>In this study a hybrid scheme for harnessing vibration energy is proposed, which incorporates both electromagnetic and piezoelectric effects into a bi-stable fork-shaped harvester to increase the harvesting efficiency. This harvester consists of a fork-shaped inverted beam, three tip magnets and an iron-core coil, it can realize jumping between potential wells within a broadband frequency range. Under base excitations, the fork-shaped structure oscillates and jumps between potential wells, making the magnetic flux through the coil change dramatically and thus generating large electric output. Meanwhile, the piezoelectric material bonded to the root of fork-shaped structure deflects greatly and generates electric output through piezoelectric effect. This combination of electromagnetic and piezoelectric effects can promote the harvesting performance significantly. Theoretical analyses and simulations are carried out. The validation experiments are conducted. The experiment results prove that the hybrid energy harvester owns a wide working frequency band. The system can execute jumping between potential wells under weak random excitations and generates large outputs. For a random excitation with power spectral density (PSD) of 0.065 g<sup>2</sup>/Hz, the electromagnetic root mean square (RMS) power can reach 2.626 mW.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"229 ","pages":"Article 112549"},"PeriodicalIF":7.9000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088832702500250X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study a hybrid scheme for harnessing vibration energy is proposed, which incorporates both electromagnetic and piezoelectric effects into a bi-stable fork-shaped harvester to increase the harvesting efficiency. This harvester consists of a fork-shaped inverted beam, three tip magnets and an iron-core coil, it can realize jumping between potential wells within a broadband frequency range. Under base excitations, the fork-shaped structure oscillates and jumps between potential wells, making the magnetic flux through the coil change dramatically and thus generating large electric output. Meanwhile, the piezoelectric material bonded to the root of fork-shaped structure deflects greatly and generates electric output through piezoelectric effect. This combination of electromagnetic and piezoelectric effects can promote the harvesting performance significantly. Theoretical analyses and simulations are carried out. The validation experiments are conducted. The experiment results prove that the hybrid energy harvester owns a wide working frequency band. The system can execute jumping between potential wells under weak random excitations and generates large outputs. For a random excitation with power spectral density (PSD) of 0.065 g2/Hz, the electromagnetic root mean square (RMS) power can reach 2.626 mW.
期刊介绍:
Journal Name: Mechanical Systems and Signal Processing (MSSP)
Interdisciplinary Focus:
Mechanical, Aerospace, and Civil Engineering
Purpose:Reporting scientific advancements of the highest quality
Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems