Maritime decarbonization through machine learning: A critical systematic review of fuel and power prediction models

IF 6.9 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Son Nguyen , Matthieu Gadel , Ke Wang , Jing Li , Xiaocai Zhang , Siang-Ching Kong , Xiuju Fu , Zheng Qin
{"title":"Maritime decarbonization through machine learning: A critical systematic review of fuel and power prediction models","authors":"Son Nguyen ,&nbsp;Matthieu Gadel ,&nbsp;Ke Wang ,&nbsp;Jing Li ,&nbsp;Xiaocai Zhang ,&nbsp;Siang-Ching Kong ,&nbsp;Xiuju Fu ,&nbsp;Zheng Qin","doi":"10.1016/j.clscn.2025.100210","DOIUrl":null,"url":null,"abstract":"<div><div>A vital component of decarbonization and operational optimization in the maritime industry is predicting ship propulsion power requirements and fuel consumption rates. This study systematically and critically reviews the application of machine learning (ML) in fuel and power estimation and prediction (FEP) in the last decade (2013–2024) regarding the two cores of ML models, including aspects of data and the applied learning algorithms. This study revealed the urgent need of the field in data-centricity and standardization of model performance benchmarking that covers more than just accuracy. Research directions were recommended, focusing on reliable and applicable FEP, objective-specific development, and model trustworthiness and maintenance policies. This paper advocates a practical application of ML and other AI applications in real-world settings to support their certifiability and the development of related policies and regulations, thus enhancing the transition toward robust data-driven decarbonization and operational efficiency.</div></div>","PeriodicalId":100253,"journal":{"name":"Cleaner Logistics and Supply Chain","volume":"14 ","pages":"Article 100210"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Logistics and Supply Chain","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772390925000095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A vital component of decarbonization and operational optimization in the maritime industry is predicting ship propulsion power requirements and fuel consumption rates. This study systematically and critically reviews the application of machine learning (ML) in fuel and power estimation and prediction (FEP) in the last decade (2013–2024) regarding the two cores of ML models, including aspects of data and the applied learning algorithms. This study revealed the urgent need of the field in data-centricity and standardization of model performance benchmarking that covers more than just accuracy. Research directions were recommended, focusing on reliable and applicable FEP, objective-specific development, and model trustworthiness and maintenance policies. This paper advocates a practical application of ML and other AI applications in real-world settings to support their certifiability and the development of related policies and regulations, thus enhancing the transition toward robust data-driven decarbonization and operational efficiency.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信