In-situ construction of morphology-controllable flower-shaped lignin-derived carbon/ZnO composite for efficient photocatalytic degradation of organic dyes
Zhengtao Wei , Xiaofei Wang , Xuliang Lin , Xueqing Qiu
{"title":"In-situ construction of morphology-controllable flower-shaped lignin-derived carbon/ZnO composite for efficient photocatalytic degradation of organic dyes","authors":"Zhengtao Wei , Xiaofei Wang , Xuliang Lin , Xueqing Qiu","doi":"10.1016/j.cjche.2024.11.010","DOIUrl":null,"url":null,"abstract":"<div><div>The emission of organic pollutants from the dye industry and medical treatment represents a significant threat to the quality of water resources and human health. The development of green, environmentally friendly and efficient photocatalysts for the removal of organic pollutants from the environment is of paramount importance in addressing these issues. Flower-like lignin-derived carbon (LC)/zinc oxide (ZnO) composites with controllable morphology were synthesized via a direct precipitation method. In this study, alkali lignin was employed as an anionic active agent to alter the molecular arrangement on the liquid surface during the synthesis reaction and to reduce the surface tension between mixtures, thereby forming a special stacked morphology, which was then used for the highly efficient removal of methylidene blue (MB) and tetracycline hydrochloride (TCH) in water under different light conditions. The formation mechanism of LC/ZnO and the degradation characteristics under different reaction conditions were investigated. The loading of LC can form composites with large specific surface area and rich porous structure. In addition, with the help of lignin, the morphology of ZnO was changed from a rod-like structure to a lamellar structure, and LC could effectively reduce the band gap of ZnO, which could improve the electron transfer rate in the photocatalytic process. The ·O₂⁻ and ·OH radicals generated under photoexcitation promoted the decomposition of pollutants. This study presents a simple, economical, and scalable method for the application of photocatalysts and explores new ways for the high-value application of industrial lignin.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"79 ","pages":"Pages 241-251"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100495412500014X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The emission of organic pollutants from the dye industry and medical treatment represents a significant threat to the quality of water resources and human health. The development of green, environmentally friendly and efficient photocatalysts for the removal of organic pollutants from the environment is of paramount importance in addressing these issues. Flower-like lignin-derived carbon (LC)/zinc oxide (ZnO) composites with controllable morphology were synthesized via a direct precipitation method. In this study, alkali lignin was employed as an anionic active agent to alter the molecular arrangement on the liquid surface during the synthesis reaction and to reduce the surface tension between mixtures, thereby forming a special stacked morphology, which was then used for the highly efficient removal of methylidene blue (MB) and tetracycline hydrochloride (TCH) in water under different light conditions. The formation mechanism of LC/ZnO and the degradation characteristics under different reaction conditions were investigated. The loading of LC can form composites with large specific surface area and rich porous structure. In addition, with the help of lignin, the morphology of ZnO was changed from a rod-like structure to a lamellar structure, and LC could effectively reduce the band gap of ZnO, which could improve the electron transfer rate in the photocatalytic process. The ·O₂⁻ and ·OH radicals generated under photoexcitation promoted the decomposition of pollutants. This study presents a simple, economical, and scalable method for the application of photocatalysts and explores new ways for the high-value application of industrial lignin.
期刊介绍:
The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors.
The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.