Riboflavin-UV crosslinking of the cornea: Wound healing and biomechanics

IF 3 2区 医学 Q1 OPHTHALMOLOGY
Brecken Blackburn , Barbara A.L. Dutra , Bassel Hammoud , Giuliano Scarcelli , William J. Dupps , J.Bradley Randleman , Steven E. Wilson
{"title":"Riboflavin-UV crosslinking of the cornea: Wound healing and biomechanics","authors":"Brecken Blackburn ,&nbsp;Barbara A.L. Dutra ,&nbsp;Bassel Hammoud ,&nbsp;Giuliano Scarcelli ,&nbsp;William J. Dupps ,&nbsp;J.Bradley Randleman ,&nbsp;Steven E. Wilson","doi":"10.1016/j.exer.2025.110321","DOIUrl":null,"url":null,"abstract":"<div><div>The corneal wound healing response to Riboflavin-ultraviolet-crosslinking (RIB-UV-CXL) depends on the specific method used in treatment. The predominance of clinical evidence supports the classical “epithelium-off” RIB-UV-CXL method being more effective in halting ectasia progression than various “epithelium-on” methods, where the corneal epithelium is maintained intact. Corneal transparency results from the precise organization of collagen fibrils and extracellular matrix, along with transparent keratocytes. The mild and transient stromal opacity seen after standard RIB-UV-CXL is linked to changes in hydration, cellularity, and matrix composition. As hydration normalizes, opacity arises from the development of corneal fibroblasts and their secretion of disordered extracellular matrix materials including collagens. Over months, as the epithelial basement membrane regenerates, transitioning stromal cells either undergo apoptosis or revert to keratocan-positive keratocytes, restoring stromal transparency. In normal healing after standard RIB-UV-CXL, the stroma is eventually repopulated predominantly by keratocytes without significant persisting fibroblasts, immune cells, or myofibroblasts. Biomechanical studies have extensively explored how CXL strengthens corneal tissue, providing insight into its therapeutic mechanisms. The purpose of this review is to evaluate the wound healing response and biomechanical changes in the cornea following RIB-UV-CXL.</div></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"254 ","pages":"Article 110321"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014483525000922","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The corneal wound healing response to Riboflavin-ultraviolet-crosslinking (RIB-UV-CXL) depends on the specific method used in treatment. The predominance of clinical evidence supports the classical “epithelium-off” RIB-UV-CXL method being more effective in halting ectasia progression than various “epithelium-on” methods, where the corneal epithelium is maintained intact. Corneal transparency results from the precise organization of collagen fibrils and extracellular matrix, along with transparent keratocytes. The mild and transient stromal opacity seen after standard RIB-UV-CXL is linked to changes in hydration, cellularity, and matrix composition. As hydration normalizes, opacity arises from the development of corneal fibroblasts and their secretion of disordered extracellular matrix materials including collagens. Over months, as the epithelial basement membrane regenerates, transitioning stromal cells either undergo apoptosis or revert to keratocan-positive keratocytes, restoring stromal transparency. In normal healing after standard RIB-UV-CXL, the stroma is eventually repopulated predominantly by keratocytes without significant persisting fibroblasts, immune cells, or myofibroblasts. Biomechanical studies have extensively explored how CXL strengthens corneal tissue, providing insight into its therapeutic mechanisms. The purpose of this review is to evaluate the wound healing response and biomechanical changes in the cornea following RIB-UV-CXL.
角膜的核黄素-紫外线交联:伤口愈合和生物力学
角膜创面对核黄素-紫外交联(RIB-UV-CXL)的愈合反应取决于治疗中使用的具体方法。临床证据的优势支持经典的“上皮关闭”RIB-UV-CXL方法在阻止扩张进展方面比各种“上皮打开”方法更有效,其中角膜上皮保持完整。角膜透明源于胶原原纤维和细胞外基质的精确组织,以及透明的角化细胞。标准RIB-UV-CXL后所见的轻度和短暂间质混浊与水合作用、细胞结构和基质组成的变化有关。随着水合作用的正常化,角膜成纤维细胞的发育和它们分泌的包括胶原在内的细胞外基质物质紊乱引起了混浊。数月后,随着上皮基底膜的再生,过渡间质细胞要么发生凋亡,要么恢复为角化蛋白阳性的角化细胞,从而恢复间质透明度。在标准RIB-UV-CXL后的正常愈合中,基质最终主要由角化细胞重新填充,没有明显的持续成纤维细胞、免疫细胞或肌成纤维细胞。生物力学研究广泛探索了CXL如何增强角膜组织,为其治疗机制提供了见解。本综述的目的是评估RIB-UV-CXL术后角膜创面愈合反应和生物力学变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental eye research
Experimental eye research 医学-眼科学
CiteScore
6.80
自引率
5.90%
发文量
323
审稿时长
66 days
期刊介绍: The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信