Siham Koriche , Abdelkader Khalfallah , Hiba Azzeddine , Thierry Baudin , François Brisset , Yi Huang , Terence G. Langdon
{"title":"Self-annealing behavior of an Mg-Dy alloy processed by high-pressure torsion","authors":"Siham Koriche , Abdelkader Khalfallah , Hiba Azzeddine , Thierry Baudin , François Brisset , Yi Huang , Terence G. Langdon","doi":"10.1016/j.cap.2025.02.010","DOIUrl":null,"url":null,"abstract":"<div><div>An investigation was conducted to evaluate the microstructure, texture and microhardness of an Mg-0.4Dy (wt.%) alloy processed by high-pression torsion (HPT) for 15 turns and then self-annealed at ambient temperature for six years. Electron backscatter diffraction (EBSD) and Vickers microhardness were carried out near the centre, mid-radius and edge of each disc. The results show that self-annealing leads to a slight increase in the average grain size from 0.7 to 1 μm. The basal texture was retained at the centres and edges of the discs while the <em>C</em><sub><em>1</em></sub>-fiber vanished near the mid-radius of the self-annealed disc. The value of the microhardness remained constant along the radii of the discs but the dislocation density, originating from the geometrically necessary dislocations (GND), increased significantly after self-annealing due to the development of sub-grain boundaries with misorientations of 2°< θ < 5°. Based on these results, it is concluded that self-annealing of the HPT-processed Mg-0.4Dy alloy is controlled by a recovery process.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"73 ","pages":"Pages 41-48"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925000550","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An investigation was conducted to evaluate the microstructure, texture and microhardness of an Mg-0.4Dy (wt.%) alloy processed by high-pression torsion (HPT) for 15 turns and then self-annealed at ambient temperature for six years. Electron backscatter diffraction (EBSD) and Vickers microhardness were carried out near the centre, mid-radius and edge of each disc. The results show that self-annealing leads to a slight increase in the average grain size from 0.7 to 1 μm. The basal texture was retained at the centres and edges of the discs while the C1-fiber vanished near the mid-radius of the self-annealed disc. The value of the microhardness remained constant along the radii of the discs but the dislocation density, originating from the geometrically necessary dislocations (GND), increased significantly after self-annealing due to the development of sub-grain boundaries with misorientations of 2°< θ < 5°. Based on these results, it is concluded that self-annealing of the HPT-processed Mg-0.4Dy alloy is controlled by a recovery process.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.