{"title":"Enzymes targeting distinct hydrolysis blind-spots of thermal and biological pre-treatments significantly uplift biogas production","authors":"Nasreen Nasar , Giulia Pizzagalli , Frederic Coulon , Yadira Bajón-Fernández","doi":"10.1016/j.biortech.2025.132353","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal hydrolysis process (THP) and biological hydrolysis (BH) are key pre-treatment technologies for anaerobic digestion (AD), termed advanced anaerobic digesters (AADs). They target the rate-limiting hydrolysis step in AD. This study evaluates full-scale pre-treatments for macromolecule bias and the implementation of hydrolysis enzymes to enhance biogas yield. Findings show THP significantly improves protein and carbohydrate solubilisation by 30% and 25%, respectively, but fully hydrolyses only carbohydrates. In contrast, BH targets fibres and proteins, achieving 35% and 23% solubilisation, and only partially hydrolyses carbohydrates. Biomethane potential (BMP) tests indicate that protease enzymes raise biomethane yield by 20–30% for AAD with THP pre-treatment. In comparison, α-amylase increases it by over 30% for AAD with BH pre-treatment. This study tailors enzyme selection and dosage to specifically address the unique “hydrolysis blind spot” of each pre-treatment, providing a strategic framework to enhance AD technologies by an improved understanding of macromolecule selectivity and their transformation pathways.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"426 ","pages":"Article 132353"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425003190","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal hydrolysis process (THP) and biological hydrolysis (BH) are key pre-treatment technologies for anaerobic digestion (AD), termed advanced anaerobic digesters (AADs). They target the rate-limiting hydrolysis step in AD. This study evaluates full-scale pre-treatments for macromolecule bias and the implementation of hydrolysis enzymes to enhance biogas yield. Findings show THP significantly improves protein and carbohydrate solubilisation by 30% and 25%, respectively, but fully hydrolyses only carbohydrates. In contrast, BH targets fibres and proteins, achieving 35% and 23% solubilisation, and only partially hydrolyses carbohydrates. Biomethane potential (BMP) tests indicate that protease enzymes raise biomethane yield by 20–30% for AAD with THP pre-treatment. In comparison, α-amylase increases it by over 30% for AAD with BH pre-treatment. This study tailors enzyme selection and dosage to specifically address the unique “hydrolysis blind spot” of each pre-treatment, providing a strategic framework to enhance AD technologies by an improved understanding of macromolecule selectivity and their transformation pathways.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.