Biochar mediated differential regulation of oxidative stress and energy supply in Bacillus subtilis and Rhizoctonia solani

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Zihe Deng , Jianwen Wang , Jonathan A. Bennett , Wenjun Shao , Ziyuan An , Yanhui He , Fei Tian , Zhansheng Wu
{"title":"Biochar mediated differential regulation of oxidative stress and energy supply in Bacillus subtilis and Rhizoctonia solani","authors":"Zihe Deng ,&nbsp;Jianwen Wang ,&nbsp;Jonathan A. Bennett ,&nbsp;Wenjun Shao ,&nbsp;Ziyuan An ,&nbsp;Yanhui He ,&nbsp;Fei Tian ,&nbsp;Zhansheng Wu","doi":"10.1016/j.biortech.2025.132317","DOIUrl":null,"url":null,"abstract":"<div><div>Biochar (BC) significantly influences microbial metabolism, but its contrasting effects on different microorganisms remain unclear. This research explores the distinct regulatory mechanisms of BC on <em>B. subtilis</em> and <em>R. solani</em>. BC, consisting of micro-BC and nano-BC, generates reactive oxygen species (ROS), causing oxidative stress. Nano-BC can penetrate cells, leading to damage. In <em>B. subtilis</em>, BC initially inhibits growth, triggering endospore formation to expel nano-BC. <em>B. subtilis</em> secreted extracellular polymeric substances (EPS), which aggregated nano-BC, enhanced cell adhesion, and reduced intracellular ROS (from 2.0 to 1.5-fold), promoting growth later with BC’s nutrient support. Conversely, <em>R. solani</em> cannot block nano-BC entry, activating mitophagy and suppressing genes like <em>ATP1,2</em> involved in oxidative phosphorylation and tricarboxylic acid cycle. This results in ATP deficiency, collapses antioxidant system, raises ROS (from 3.9 to 4.5-fold), decreases cell survival, and leads to cell death. These findings highlight BC’s selective microbial regulation and its potential for safe agricultural and environmental use.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"426 ","pages":"Article 132317"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425002834","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Biochar (BC) significantly influences microbial metabolism, but its contrasting effects on different microorganisms remain unclear. This research explores the distinct regulatory mechanisms of BC on B. subtilis and R. solani. BC, consisting of micro-BC and nano-BC, generates reactive oxygen species (ROS), causing oxidative stress. Nano-BC can penetrate cells, leading to damage. In B. subtilis, BC initially inhibits growth, triggering endospore formation to expel nano-BC. B. subtilis secreted extracellular polymeric substances (EPS), which aggregated nano-BC, enhanced cell adhesion, and reduced intracellular ROS (from 2.0 to 1.5-fold), promoting growth later with BC’s nutrient support. Conversely, R. solani cannot block nano-BC entry, activating mitophagy and suppressing genes like ATP1,2 involved in oxidative phosphorylation and tricarboxylic acid cycle. This results in ATP deficiency, collapses antioxidant system, raises ROS (from 3.9 to 4.5-fold), decreases cell survival, and leads to cell death. These findings highlight BC’s selective microbial regulation and its potential for safe agricultural and environmental use.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信