Molecular basis for the effects of SSRIs in non-target aquatic invertebrates: A case study with Mytilus galloprovincialis early larvae

IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY
Beatrice Risso , Angelica Miglioli , Teresa Balbi , Rémi Dumollard , Laura Canesi
{"title":"Molecular basis for the effects of SSRIs in non-target aquatic invertebrates: A case study with Mytilus galloprovincialis early larvae","authors":"Beatrice Risso ,&nbsp;Angelica Miglioli ,&nbsp;Teresa Balbi ,&nbsp;Rémi Dumollard ,&nbsp;Laura Canesi","doi":"10.1016/j.aquatox.2025.107306","DOIUrl":null,"url":null,"abstract":"<div><div>Selective Serotonin Reuptake Inhibitors (SSRIs) are among the most prescribed antidepressants, whose increasing consumption results in a continuous discharge into aquatic compartments, where they are detected at ng-µg/L levels. Whilst designed to modulate endogenous levels of circulating Serotonin (5-HT) in humans by selectively interfering with serotonin reuptake transporters (SERTs), SSRIs have been shown to induce a variety of adverse effects in non-target species, including aquatic invertebrates.</div><div>In bivalve molluscs, adult exposure to environmental concentrations of SSRIs results in tissue bioaccumulation and induces different biomarker responses. However, the effects were not related to the mechanisms of action of SSRIs, due to poor knowledge of their direct molecular targets, SERT in particular. Much less information is available in embryo-larval stages.</div><div>In this work, the effects of different SSRIs (Fluoxetine, Citalopram, Sertraline, 1–100 µg/L) were compared in the model of <em>Mytilus galloprovincialis</em> embryo-larval development. SSRIs showed small or no effects on normal larval development at 48 h post fertilization (hpf). The possible direct or indirect molecular targets of SSRIs were thus investigated in mussel larvae. Two conserved SERT sequences, SERT1-<em>like</em> and SERT2-<em>like</em>, were identified in <em>M. galloprovincialis</em> genome: their developmental expression showed increased transcription only from 44 and 20 hpf, respectively. A much higher and earlier expression (from 12 hpf) was observed for TPH (Tryptophan Hydroxylase), the rate limiting enzyme in 5-HT synthesis. Double <em>in situ</em> Hybridization Chain Reaction (HCR) showed partial colocalisation of TPH with SERT1-<em>like</em> and SERT2-<em>like</em> transcripts in 48 hpf larvae. At this stage, SSRIs induced a small but significant decrease in the number of TPH-positive cells. Finally, 19 Nose Resistance to Fluoxetine (nrf) sequences were identified, that were highly expressed across all early stages (0–48 hpf). At 48 hpf, nrf expression was associated with the digestive system. The results represent the first data on the establishment of the serotonergic system in mussel early larvae, representing the molecular basis for understanding the effects of SSRIs and their mechanisms of action in model non-target marine invertebrates.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"282 ","pages":"Article 107306"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25000712","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Selective Serotonin Reuptake Inhibitors (SSRIs) are among the most prescribed antidepressants, whose increasing consumption results in a continuous discharge into aquatic compartments, where they are detected at ng-µg/L levels. Whilst designed to modulate endogenous levels of circulating Serotonin (5-HT) in humans by selectively interfering with serotonin reuptake transporters (SERTs), SSRIs have been shown to induce a variety of adverse effects in non-target species, including aquatic invertebrates.
In bivalve molluscs, adult exposure to environmental concentrations of SSRIs results in tissue bioaccumulation and induces different biomarker responses. However, the effects were not related to the mechanisms of action of SSRIs, due to poor knowledge of their direct molecular targets, SERT in particular. Much less information is available in embryo-larval stages.
In this work, the effects of different SSRIs (Fluoxetine, Citalopram, Sertraline, 1–100 µg/L) were compared in the model of Mytilus galloprovincialis embryo-larval development. SSRIs showed small or no effects on normal larval development at 48 h post fertilization (hpf). The possible direct or indirect molecular targets of SSRIs were thus investigated in mussel larvae. Two conserved SERT sequences, SERT1-like and SERT2-like, were identified in M. galloprovincialis genome: their developmental expression showed increased transcription only from 44 and 20 hpf, respectively. A much higher and earlier expression (from 12 hpf) was observed for TPH (Tryptophan Hydroxylase), the rate limiting enzyme in 5-HT synthesis. Double in situ Hybridization Chain Reaction (HCR) showed partial colocalisation of TPH with SERT1-like and SERT2-like transcripts in 48 hpf larvae. At this stage, SSRIs induced a small but significant decrease in the number of TPH-positive cells. Finally, 19 Nose Resistance to Fluoxetine (nrf) sequences were identified, that were highly expressed across all early stages (0–48 hpf). At 48 hpf, nrf expression was associated with the digestive system. The results represent the first data on the establishment of the serotonergic system in mussel early larvae, representing the molecular basis for understanding the effects of SSRIs and their mechanisms of action in model non-target marine invertebrates.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aquatic Toxicology
Aquatic Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
4.40%
发文量
250
审稿时长
56 days
期刊介绍: Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems. Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信