Toxicity of microplastics polystyrene to freshwater planarians and the alleviative effects of anthocyanins

IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY
He-Cai Zhang, Xiao-Qing Yang, Cai-Hui Wang, Chang-Yang Shang, Chang-Ying Shi, Guang-Wen Chen, De-Zeng Liu
{"title":"Toxicity of microplastics polystyrene to freshwater planarians and the alleviative effects of anthocyanins","authors":"He-Cai Zhang,&nbsp;Xiao-Qing Yang,&nbsp;Cai-Hui Wang,&nbsp;Chang-Yang Shang,&nbsp;Chang-Ying Shi,&nbsp;Guang-Wen Chen,&nbsp;De-Zeng Liu","doi":"10.1016/j.aquatox.2025.107310","DOIUrl":null,"url":null,"abstract":"<div><div>It is impossible to overlook the effects of microplastics (MPs) on aquatic organisms as they continuously accumulate in water environment. Freshwater planarians, which exist in the benthic zone of water bodies and come into contact with the deposited MPs particles, provide a highly representative model for studying the effects of MPs on aquatic organisms. Anthocyanins (ANTs) have gained significant popularity in recent years for their diverse health benefits. In the current study, the median lethal concentration (LC<sub>50</sub>) of polystyrene (PS) to planarian <em>Dugesia japonica</em> was determined for the first time. Based on this, multiple toxic effects of single PS and PS in combination with ANTs on planarians were explored. The results showed that PS exposure disrupted the redox homeostasis and induced oxidative damage in planarians. Also, PS stress affected the neuromorphology, aggravated cell apoptosis in planarians probably by altering neural gene expressions as well as promoting the expression of apoptosis-related genes while inhibiting stem cell marker genes. In addition, the results also suggested that co-exposure of ANTs could effectively alleviate the toxicity of PS on planarians. Particularly, long-term environmentally relevant concentration PS exposure exhibited a higher propensity for inducing toxicity on planarians than short-term high concentration acute exposure, indicating that the harm of environmental MPs to humans and wildlife exposed to them should not be underestimated. Therefore, considering the recently rising and rapid development of ecotoxicomics, more in-depth research on the toxicity mechanism of environmentally relevant concentration PS-MPs to freshwater planarians from multi-omics levels will be our future work.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"282 ","pages":"Article 107310"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X2500075X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

It is impossible to overlook the effects of microplastics (MPs) on aquatic organisms as they continuously accumulate in water environment. Freshwater planarians, which exist in the benthic zone of water bodies and come into contact with the deposited MPs particles, provide a highly representative model for studying the effects of MPs on aquatic organisms. Anthocyanins (ANTs) have gained significant popularity in recent years for their diverse health benefits. In the current study, the median lethal concentration (LC50) of polystyrene (PS) to planarian Dugesia japonica was determined for the first time. Based on this, multiple toxic effects of single PS and PS in combination with ANTs on planarians were explored. The results showed that PS exposure disrupted the redox homeostasis and induced oxidative damage in planarians. Also, PS stress affected the neuromorphology, aggravated cell apoptosis in planarians probably by altering neural gene expressions as well as promoting the expression of apoptosis-related genes while inhibiting stem cell marker genes. In addition, the results also suggested that co-exposure of ANTs could effectively alleviate the toxicity of PS on planarians. Particularly, long-term environmentally relevant concentration PS exposure exhibited a higher propensity for inducing toxicity on planarians than short-term high concentration acute exposure, indicating that the harm of environmental MPs to humans and wildlife exposed to them should not be underestimated. Therefore, considering the recently rising and rapid development of ecotoxicomics, more in-depth research on the toxicity mechanism of environmentally relevant concentration PS-MPs to freshwater planarians from multi-omics levels will be our future work.
聚苯乙烯微塑料对淡水涡虫的毒性及花青素的缓解作用
微塑料在水环境中不断积累,对水生生物的影响不容忽视。淡水涡虫存在于水体底栖区,与沉积的多磺酸粘多糖颗粒接触,为研究多磺酸粘多糖对水生生物的影响提供了极具代表性的模型。近年来,花青素因其多种健康益处而受到广泛欢迎。本研究首次测定了聚苯乙烯(PS)对涡虫Dugesia japonica的中位致死浓度(LC50)。在此基础上,探讨了单一PS和PS联合蚂蚁对涡虫的多重毒性效应。结果表明,PS暴露破坏了涡虫的氧化还原稳态,引起了氧化损伤。此外,PS胁迫影响涡虫神经形态,加重细胞凋亡,可能是通过改变神经基因表达,促进凋亡相关基因表达,抑制干细胞标记基因。此外,结果还表明,蚂蚁共暴露可有效减轻PS对涡虫的毒性。特别是,长期环境相关浓度PS暴露比短期高浓度急性暴露对涡虫具有更高的诱导毒性倾向,表明环境MPs对暴露于其下的人类和野生动物的危害不可低估。因此,考虑到近年来生态毒理学的兴起和快速发展,从多组学水平更深入地研究环境相关浓度PS-MPs对淡水涡虫的毒性机制将是我们未来的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aquatic Toxicology
Aquatic Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
4.40%
发文量
250
审稿时长
56 days
期刊介绍: Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems. Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信