Xuedan Hou , Pengfei Zhao , Xiaohui Lin , Yunxing Gao , Huidong Chen , Di Cai , Peiyong Qin
{"title":"Current advances in distillation processes for fermentative acetone-butanol-ethanol purification","authors":"Xuedan Hou , Pengfei Zhao , Xiaohui Lin , Yunxing Gao , Huidong Chen , Di Cai , Peiyong Qin","doi":"10.1016/j.cjche.2024.08.014","DOIUrl":null,"url":null,"abstract":"<div><div>Acetone-butanol-ethanol (ABE) fermentation is a primary strategy for producing bio-based <em>n-</em>butanol from abundant renewable biomass. In the typical ABE production chain, distillation is an essential unit for high purity A-B-E productions, but has long been criticized by the energy-inefficient processes due to the extremely low solvents concentration received in the upstream fermentation system. Over the past decades, efforts have been dedicated to developing eco-efficient ABE distillation processes aimed at reducing both energy costs and capital investments. In this review, a comprehensive overview on ABE distillation systems is provided from physico-chemical properties in feed and thermodynamics to the process constructions and applications. The recent trends in distillation sequence construction that fitting with the rapid developed upstream <em>in situ</em> product recovery (ISPR) systems are emphasized. Furthermore, towards developing a more efficient ABE distillation system, the review takes a broad overview of the intensification strategies for ABE distillation. Along with systematic introduction of the key examples, the future directions for ABE distillation techniques development are also discussed towards a sustainable and low-carbon emission biorefineries.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"79 ","pages":"Pages 91-108"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954125000096","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Acetone-butanol-ethanol (ABE) fermentation is a primary strategy for producing bio-based n-butanol from abundant renewable biomass. In the typical ABE production chain, distillation is an essential unit for high purity A-B-E productions, but has long been criticized by the energy-inefficient processes due to the extremely low solvents concentration received in the upstream fermentation system. Over the past decades, efforts have been dedicated to developing eco-efficient ABE distillation processes aimed at reducing both energy costs and capital investments. In this review, a comprehensive overview on ABE distillation systems is provided from physico-chemical properties in feed and thermodynamics to the process constructions and applications. The recent trends in distillation sequence construction that fitting with the rapid developed upstream in situ product recovery (ISPR) systems are emphasized. Furthermore, towards developing a more efficient ABE distillation system, the review takes a broad overview of the intensification strategies for ABE distillation. Along with systematic introduction of the key examples, the future directions for ABE distillation techniques development are also discussed towards a sustainable and low-carbon emission biorefineries.
期刊介绍:
The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors.
The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.