Standardization of lipid sample preparation for monitoring phospholipase activity

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Laís Cardoso Cunha , Verônica Silva Valadares , Jamil Silvano de Oliveira , Liza Figueiredo Felicori , Adolfo Henrique Moraes
{"title":"Standardization of lipid sample preparation for monitoring phospholipase activity","authors":"Laís Cardoso Cunha ,&nbsp;Verônica Silva Valadares ,&nbsp;Jamil Silvano de Oliveira ,&nbsp;Liza Figueiredo Felicori ,&nbsp;Adolfo Henrique Moraes","doi":"10.1016/j.abb.2025.110373","DOIUrl":null,"url":null,"abstract":"<div><div>Phospholipase enzymes, such as A1, A2, B, and D, are found in the venom of venomous animals, including brown spiders. Phospholipase D (PLD) isoforms from brown spider venom can cause dermonecrosis, hemolysis, and nephrotoxicity. New methods to monitor PLD activity are essential for understanding its mechanisms and molecular characteristics. One effective approach is using <sup>31</sup>P nuclear magnetic resonance (<sup>31</sup>P NMR) spectroscopy to track PLD enzymatic activity by identifying the <sup>31</sup>P signals of phosphorylated substrates and products. However, sample preparation for <sup>31</sup>P NMR is challenging, as the lipid substrates’ carbon chain length and unsaturation degree can affect solubilization, oxidation, and enzyme interaction, impacting the reaction kinetics. This study standardizes a phospholipid sample preparation method with fatty acids of different chain lengths for monitoring PLD activity. The addition of CHAPS detergent is essential for solubilizing lipids with long-chain fatty acids, but its concentration needs optimization, as higher amounts can inhibit PLD activity. Storing lipids in ethanol, forming lipid films, and injecting nitrogen into stock solutions improved lipid quantification and assay reproducibility. These standardized conditions can be adapted to other experimental approaches for monitoring phospholipase activity.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"768 ","pages":"Article 110373"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986125000864","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phospholipase enzymes, such as A1, A2, B, and D, are found in the venom of venomous animals, including brown spiders. Phospholipase D (PLD) isoforms from brown spider venom can cause dermonecrosis, hemolysis, and nephrotoxicity. New methods to monitor PLD activity are essential for understanding its mechanisms and molecular characteristics. One effective approach is using 31P nuclear magnetic resonance (31P NMR) spectroscopy to track PLD enzymatic activity by identifying the 31P signals of phosphorylated substrates and products. However, sample preparation for 31P NMR is challenging, as the lipid substrates’ carbon chain length and unsaturation degree can affect solubilization, oxidation, and enzyme interaction, impacting the reaction kinetics. This study standardizes a phospholipid sample preparation method with fatty acids of different chain lengths for monitoring PLD activity. The addition of CHAPS detergent is essential for solubilizing lipids with long-chain fatty acids, but its concentration needs optimization, as higher amounts can inhibit PLD activity. Storing lipids in ethanol, forming lipid films, and injecting nitrogen into stock solutions improved lipid quantification and assay reproducibility. These standardized conditions can be adapted to other experimental approaches for monitoring phospholipase activity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信