Multidimensional seismic fragility analysis of subway station structures using the adaptive bandwidth kernel density estimation and Copula function

IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL
Chunyi Cui , Jingtong Zhao , Minze Xu , Chengshun Xu , Hailong Liu , Kunpeng Wang
{"title":"Multidimensional seismic fragility analysis of subway station structures using the adaptive bandwidth kernel density estimation and Copula function","authors":"Chunyi Cui ,&nbsp;Jingtong Zhao ,&nbsp;Minze Xu ,&nbsp;Chengshun Xu ,&nbsp;Hailong Liu ,&nbsp;Kunpeng Wang","doi":"10.1016/j.undsp.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>Structural damages during an earthquake are typically controlled by seismic demands, which are represented by the combination of amplitude of ground motion and cyclic load effects. Since traditional methods normally assume the lognormal distributions of seismic demands and resistance parameters, uncertainties are inevitably induced in the seismic fragility analysis. In this paper, the Copula function and adaptive bandwidth kernel density estimation method (ABKDE) are used to establish a novel multidimensional seismic fragility analysis framework. Based on the results of incremental dynamic analysis for subway station structures, ABKDE is adopted to establish single-parameter seismic fragility curves for both the maximum inter-story drift ratio (MIDR) and cumulated dissipated hysteretic energy (CDHE), respectively. Subsequently, the Copula function is used to formulate a bivariate seismic fragility function considering the correlations among seismic demand measures and establish the corresponding fragility curves. Finally, comparative analyses are conducted to evaluate seismic fragility curves using Copula-based dual and single-parameter damage models as well as the traditional damage models. It is found that the seismic fragility analysis method using the Copula function has the ability to gain a comprehensive consideration of the MIDR and CDHE during the damage process of subway station structures. Moreover, this newly developed seismic fragility analysis framework can capture the influence of the correlation between deformation and energy under various peak ground accelerations on structural damage. Thus, this framework can provide a scientific basis for predicting structural damage in subway stations subjected to varying intensities of ground motion while considering multiple damage indicators.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"22 ","pages":"Pages 110-123"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967425000091","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Structural damages during an earthquake are typically controlled by seismic demands, which are represented by the combination of amplitude of ground motion and cyclic load effects. Since traditional methods normally assume the lognormal distributions of seismic demands and resistance parameters, uncertainties are inevitably induced in the seismic fragility analysis. In this paper, the Copula function and adaptive bandwidth kernel density estimation method (ABKDE) are used to establish a novel multidimensional seismic fragility analysis framework. Based on the results of incremental dynamic analysis for subway station structures, ABKDE is adopted to establish single-parameter seismic fragility curves for both the maximum inter-story drift ratio (MIDR) and cumulated dissipated hysteretic energy (CDHE), respectively. Subsequently, the Copula function is used to formulate a bivariate seismic fragility function considering the correlations among seismic demand measures and establish the corresponding fragility curves. Finally, comparative analyses are conducted to evaluate seismic fragility curves using Copula-based dual and single-parameter damage models as well as the traditional damage models. It is found that the seismic fragility analysis method using the Copula function has the ability to gain a comprehensive consideration of the MIDR and CDHE during the damage process of subway station structures. Moreover, this newly developed seismic fragility analysis framework can capture the influence of the correlation between deformation and energy under various peak ground accelerations on structural damage. Thus, this framework can provide a scientific basis for predicting structural damage in subway stations subjected to varying intensities of ground motion while considering multiple damage indicators.
基于自适应带宽核密度估计和Copula函数的地铁车站结构多维地震易损性分析
地震过程中的结构损伤通常由地震需求控制,地震需求由地震动幅值和循环荷载效应的组合来表示。由于传统方法通常假设地震需求和抗力参数的对数正态分布,因此在地震易损性分析中不可避免地会产生不确定性。本文采用Copula函数和自适应带宽核密度估计方法(ABKDE)建立了一种新的多维地震易损性分析框架。基于地铁车站结构增量动力分析结果,采用ABKDE分别建立了最大层间位移比(MIDR)和累积耗散滞回能(CDHE)的单参数地震易损性曲线。随后,利用Copula函数,考虑地震需求测度之间的相关性,构造了二元地震易损性函数,并建立了相应的易损性曲线。最后,对比分析了基于copula的双参数和单参数损伤模型与传统损伤模型对地震易损性曲线的评价。研究发现,采用Copula函数的地震易损性分析方法能够综合考虑地铁车站结构损伤过程中的MIDR和CDHE。此外,新开发的地震易损性分析框架可以捕捉不同峰值地面加速度下变形与能量的相关性对结构损伤的影响。因此,该框架可为考虑多种损伤指标的变烈度地震动下地铁车站结构损伤预测提供科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Underground Space
Underground Space ENGINEERING, CIVIL-
CiteScore
10.20
自引率
14.10%
发文量
71
审稿时长
63 days
期刊介绍: Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信